Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-17T17:44:24.668Z Has data issue: false hasContentIssue false

Experimental infections of pigs and mice with selected genotypes of Ascaris

Published online by Cambridge University Press:  11 July 2006

W. PENG
Affiliation:
Jiangxi Medical Science Research Institute, Nanchang University, 461 Ba Yi Road, Nanchang, Jiangxi 330006, People's Republic of China Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
K. YUAN
Affiliation:
Jiangxi Medical Science Research Institute, Nanchang University, 461 Ba Yi Road, Nanchang, Jiangxi 330006, People's Republic of China
M. HU
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
G. PENG
Affiliation:
Nanchang Municipal Centre for Disease Control and Prevention, Nanchang 330006, People's Republic of China
X. ZHOU
Affiliation:
Department of Parasitology, College of Basic Medicine, Nanchang University, 603 Ba Yi Road, Nanchang, Jiangxi 330006, People's Republic of China
N. HU
Affiliation:
Department of Parasitology, College of Basic Medicine, Nanchang University, 603 Ba Yi Road, Nanchang, Jiangxi 330006, People's Republic of China
R. B. GASSER
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia

Abstract

Extending a previous investigation of the genotypic variability within Ascaris from humans and pigs, experimental infections of mice and pigs with selected genotypes of Ascaris were performed in the present study to explore possible host affiliation. Initial findings indicate that there is a significant difference in the ability of Ascaris eggs of genotype G1 (derived from human) and G3 (derived from pig) to infect and establish as larvae in mice and as adults in pigs, supporting the difference in the frequencies of the genotypes reported previously in natural Ascaris populations in pigs and humans in areas in China endemic for ascariasis.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abebe, W., Tsuji, N., Kasuga-Aoki, H., Miyoshi, T., Isobe, T, Arakawa, T., Matsumoto, Y. and Yoshihara, S. ( 2002). Species-specific proteins identified in Ascaris lumbricoides and Ascaris suum using two-dimensional electrophoresis. Parasitology Research 88, 868871.CrossRefGoogle Scholar
Anderson, T. J. C. ( 1995). Ascaris infections in humans from North America: molecular evidence for cross-infection. Parasitology 110, 215219.CrossRefGoogle Scholar
Anderson, T. J. C. ( 2001). The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends in Parasitology 17, 183188.CrossRefGoogle Scholar
Anderson, T. J. C. and Jaenike, J. ( 1997). Host specificity, evolutionary relationships and macrogeographic differentiation among Ascaris populations from humans and pigs. Parasitology 115, 325342.CrossRefGoogle Scholar
Anderson, T. J. C., Romero-Abal, M. E. and Jaenike, J. ( 1993). Genetic structure and epidemiology of Ascaris populations: patterns of host affiliation in Guatemala. Parasitology 107, 319334.CrossRefGoogle Scholar
Anderson, T. J., Romero-Abal, M. E. and Jaenike, J. ( 1995). Mitochondrial DNA and Ascaris microepidemiology: the composition of parasite populations from individual hosts, families and villages. Parasitology 110, 221219.CrossRefGoogle Scholar
Ansel, M. and Thibault, M. ( 1973). Value of specific distinction between Ascaris lumbricoides Linne, 1758 and Ascaris suum Goeze, 1782. International Journal for Parasitology 3, 317319.CrossRefGoogle Scholar
Christie, J. F., Dunbar, B. and Kennedy, M. W. ( 1990). N-terminal amino acid sequence identity between a major allergen of Ascaris lumbricoides and Ascaris suum, and MHC-restricted IgE responses to it. Immunology 69, 7178.Google Scholar
Cooper, P. J. ( 2002). Immune responses in humans. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 89107. Kluwer Academic Publishers, Boston.
Galvin, T. J. ( 1968). Development of human and pig Ascaris in the pig and rabbit. Journal of Parasitology 54, 10851091.CrossRefGoogle Scholar
Gasser, R. B., Chilton, N. B., Hoste, H. and Beveridge, I. ( 1993). Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Research 21, 25252526.CrossRefGoogle Scholar
Gasser, R. B., Hu, M., Abs EL-Osta, Y. G, Zarlenga, D. S. and Pozio, E. ( 2004). Non-isotopic single-strand conformation polymorphism analysis of sequence variability in ribosomal DNA expansion segments within the genus Trichinella (Nematoda: Adenophorea). Electrophoresis 25, 33573364.CrossRefGoogle Scholar
He, L., Min, X., Liu, G., Xu, P. and Li, W. ( 1986). Preliminary karyotype studies on Ascaris lumbricoides and Ascaris suum from Guangzhou. Journal of Parasitology and Parasitic Diseases 4, 206208 (in Chinese with English abstract).Google Scholar
Jungersen, G. ( 2002). Immunity and immune responses in pigs. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M. W.; Series ed. Black and Seed, J. R.), pp. 105124. Kluwer Academic Publishers, Boston.
Jungersen, G., Eriksen, L., Nielsen, C. G., Roepstorff, A. and Nansen, P. ( 1996). Experimental transfer of Ascaris suum from donor pigs to helminth-naive pigs. Journal of Parasitology 82, 752756.CrossRefGoogle Scholar
Kennedy, M. W., Qureshi, F., Haswell-Elkins, M. and Elkins, D. B. ( 1987). Homology and heterology between the secreted antigens of the parasitic larval stages of Ascaris lumbricoides and Ascaris suum. Clinical and Experimental Immunology 67, 2030.Google Scholar
Kurimoto, H. ( 1974). Morphologic, biochemical and immunological studies on the differences between Ascaris lumbricoides Linnaeus, 1758 and Ascaris suum Goeze, 1782. Japanese Journal of Parasitology 23, 251267.Google Scholar
Lewis, R., Behnke, J. M., Stafford, P. and Holland, C. V. ( 2006). The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology 132, 289300.CrossRefGoogle Scholar
Maung, M. ( 1973). Ascaris lumbricoides Linne, 1758 and Ascaris suum, Goeze, 1782: morphological differences between specimens obtained from man and pig. South-East Asian Journal of Tropical Medicine and Public Health 4, 4145.Google Scholar
Mutafova, T. ( 1983). Comparative caryological studies of Ascaris lumbricoides and Ascaris suum. Helminthologia 15, 4856 (in Bulgarian).Google Scholar
Nadler, S. A. ( 1987). Biochemical and immunological systematics of some ascaridoid nematodes: genetic divergence between congeners. Journal of Parasitology 73, 811816.CrossRefGoogle Scholar
Nejsum, P., Parker, E. D. J. R., Frydenberg, J., Roepstorff, A., Boes, J., Haque, R., Astrup, I., Prag, J. and Skov Sorensen, U. B. ( 2005). Ascariasis is a zoonosis in Denmark. Journal of Clinical Microbiology 43, 11421148.CrossRefGoogle Scholar
O'lorcain, P. and Holland, C. V. ( 2000). The public health importance of Ascaris lumbricoides. Parasitology 121 (Suppl.), S51S71.CrossRefGoogle Scholar
Peng, W., Anderson, T. J. C., Zhou, X. and Kennedy, M. W. ( 1998 b). Genetic variation in sympatric Ascaris populations from humans and pigs in China. Parasitology 117, 355361.Google Scholar
Peng, W., Keng, Y., Hu, M., Zhou, X., Gasser, R. B. ( 2005). Mutation scanning-coupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of China. Electrophoresis 22, 43174326.CrossRefGoogle Scholar
Peng, W., Yuan, K., Zhou, X., Hu, M., Abs EL-Osta, Y. G. and Gasser, R. B. ( 2003 a). Molecular epidemiological investigation of Ascaris genotypes in China based on single-strand conformation polymorphism analysis of ribosomal DNA. Electrophoresis 24, 23082315.Google Scholar
Peng, W. and Zhou, X. ( 2001). Experimental epidemiological study on possible influence of pig-derived Ascaris on the transmission of human ascariasis. Chinese Journal of Epidemiology 22, 116118 (In Chinese with English abstract).Google Scholar
Peng, W., Zhou, X. and Crompton, D. W. T. ( 1998 a). Ascariasis in China. Advances in Parasitology 41, 109148.Google Scholar
Peng, W., Zhou, X., Cui, X., Crompton, D. W. T., Whitehead, R. R., Xiong, J., Wu, H., Peng, J., Yang, Y., Wu, W., Xu, K. and Yan, Y. ( 1996). Ascaris, people and pigs in a rural community of Jiangxi Province, China. Parasitology 113, 545557.Google Scholar
Peng, W., Zhou, X. and Gasser, R. B. ( 2003 b). Ascaris egg profiles in human faeces: biological and epidemiological implications. Parasitology 127, 283290.Google Scholar
Roepstorff, A. and Nansen, P. ( 1998). Epidemiology, diagnosis and control of helminth parasites of swine. In FAO Animal Health Manual No. 3, Food and Agricultural Organization of the United Nations, Rome.
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., Erlich, H. A. ( 1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487491.CrossRefGoogle Scholar
Slotved, H.-C., Eriksen, L., Murrell, K. D. and Nansen, P. ( 1997). Comparison of methods for recovery of Ascaris suum larvae from tissues of mice. International Journal for Parasitology 27, 13051310.CrossRefGoogle Scholar
Sprent, J. F. A. ( 1952). Anatomical distinction between human and pig strains of Ascaris. Nature, London 120, 627628.CrossRefGoogle Scholar
Stephenson, L. S. ( 2002). Pathophysiology of intestinal nematodes. In World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M.), pp. 3961. Kluwer Academic Press, Boston.CrossRef
Stewart, T. B. and Hale, O. M. ( 1988). Losses to internal parasites in swine production. Journal of Animal Science 66, 15481554.CrossRefGoogle Scholar
Takata, I. ( 1951). Experimental infection of man with Ascaris of man and the pig. Kitasato Archives of Experimental Medicine 23, 4959.Google Scholar
Wakelin, D. and Bradley, J. E. ( 2002). Parasite strain diversity and host immune responses. In: World Class Parasites: Volume 2. The Geohelminths: Ascaris, Trichuris and Hookworm ( ed. Holland, C. V. and Kennedy, M.), pp. 199218. Kluwer Academic Press, Boston.CrossRef
Wakelin, D., Farias, S. E. and Bradley, J. E. ( 2002). Variation and immunity to intestinal worms. Parasitology 125 (Suppl.), S39S50.CrossRefGoogle Scholar
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., Aivaliotis, M. J., Rai, D. R., Upadhayay, R. P., Jha, B. and Blangero, J. ( 2002). Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proceedings of the National Academy of Sciences, USA 99, 55335538.CrossRefGoogle Scholar
WORLD HEALTH ORGANIZATION ( 1996). Report of the WHO Informal Consultation on the Use of Chemotherapy for the Control of Morbidity due to Soil-Transmitted Nematodes in Humans. WHO/CTD/Sip/96.2: Geneva.
Zhu, X. Q., Gasser, R. B. and Chilton, N. B. ( 1998). Differences in the 5.8S rDNA sequences among ascarid nematodes. International Journal for Parasitology 28, 617622.Google Scholar
Zhu, X. Q., Chilton, N. B., Jacobs, D. E., Boes, J. and Gasser, R. B. ( 1999) Characterisation of Ascaris from human and pig hosts by a nuclear ribosomal DNA sequences. International Journal for Parasitology 29, 469478.CrossRefGoogle Scholar