Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T12:02:03.581Z Has data issue: false hasContentIssue false

Insights into the naturally acquired immune response to Plasmodium vivax malaria

Published online by Cambridge University Press:  07 January 2016

RHEA J. LONGLEY
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand University of Melbourne, Parkville, Victoria 3052, Australia
JETSUMON SATTABONGKOT
Affiliation:
Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
IVO MUELLER*
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia University of Melbourne, Parkville, Victoria 3052, Australia ISGlobal, Barcelona Institute for Global Health, Hospital Clínic – Universitat de Barcelona, Barcelona 08036, Spain
*
*Corresponding author. The Walter and Eliza Hall Institute of Medical Research, 1G Royale Parade, Parkville, Victoria 3052, Australia. E-mail: mueller@wehi.edu.au

Summary

Plasmodium vivax is the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared with Plasmodium falciparum. In this article we review what is known about naturally acquired immunity to P. vivax, and importantly, how this differs to that acquired against P. falciparum. Immunity to clinical P. vivax infection is acquired more quickly than to P. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successful P. vivax vaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity to P. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.

Type
Special Issue Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J. H., Sim, B. K., Dolan, S. A., Fang, X., Kaslow, D. C. and Miller, L. H. (1992). A family of erythrocyte binding proteins of malaria parasites. Proceedings of the National Academy of Sciences USA 89, 70857089.CrossRefGoogle ScholarPubMed
Ak, M., Jones, T. R., Charoenvit, Y., Kumar, S., Kaslow, D. C., Maris, D., Marwoto, H., Masbar, S. and Hoffman, S. L. (1998). Humoral immune responses against Plasmodium vivax MSP1 in humans living in a malaria endemic area in Flores, Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health 29, 685691.Google Scholar
Alam, M. T., Bora, H., Mittra, P., Singh, N. and Sharma, Y. D. (2008a). Cellular immune responses to recombinant Plasmodium vivax tryptophan-rich antigen (PvTRAg) among individuals exposed to vivax malaria. Parasite Immunology 30, 379383.CrossRefGoogle ScholarPubMed
Alam, M. T., Bora, H., Singh, N. and Sharma, Y. D. (2008b). High immunogenecity and erythrocyte-binding activity in the tryptophan-rich domain (TRD) of the 74-kDa Plasmodium vivax alanine-tryptophan-rich antigen (PvATRAg74). Vaccine 26, 37873794.CrossRefGoogle ScholarPubMed
Alves, F. P., Durlacher, R. R., Menezes, M. J., Krieger, H., Silva, L. H. and Camargo, E. P. (2002). High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. American Journal of Tropical Medicine and Hygiene 66, 641648.CrossRefGoogle ScholarPubMed
Amanna, I. J. and Slifka, M. K. (2010). Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunological Reviews 236, 125138.CrossRefGoogle ScholarPubMed
Andrade, B. B., Reis-Filho, A., Souza-Neto, S. M., Clarencio, J., Camargo, L. M., Barral, A. and Barral-Netto, M. (2010). Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malaria Journal 9, 13.CrossRefGoogle ScholarPubMed
Antonelli, L. R., Leoratti, F. M., Costa, P. A., Rocha, B. C., Diniz, S. Q., Tada, M. S., Pereira, D. B., Teixeira-Carvalho, A., Golenbock, D. T., Goncalves, R. and Gazzinelli, R. T. (2014). The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria. PLoS Pathogens 10, e1004393.CrossRefGoogle ScholarPubMed
Arevalo-Herrera, M., Roggero, M. A., Gonzalez, J. M., Vergara, J., Corradin, G., Lopez, J. A. and Herrera, S. (1998). Mapping and comparison of the B-cell epitopes recognized on the Plasmodium vivax circumsporozoite protein by immune Colombians and immunized Aotus monkeys. Annals of Tropical Medecine and Parasitology 92, 539551.CrossRefGoogle ScholarPubMed
Arevalo-Herrera, M., Solarte, Y., Zamora, F., Mendez, F., Yasnot, M. F., Rocha, L., Long, C., Miller, L. H. and Herrera, S. (2005). Plasmodium vivax: transmission-blocking immunity in a malaria-endemic area of Colombia. American Journal of Tropical Medicine and Hygiene 73, 3843.CrossRefGoogle Scholar
Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., Gao, X., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Innamorato, F., Iodice, J., Kissinger, J. C., Kraemer, E., Li, W., Miller, J. A., Nayak, V., Pennington, C., Pinney, D. F., Roos, D. S., Ross, C., Stoeckert, C. J. Jr., Treatman, C. and Wang, H. (2009). PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Research 37, D539D543.CrossRefGoogle ScholarPubMed
Baird, J. K. (2013). Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clinical Microbiology Reviews 26, 3657.CrossRefGoogle ScholarPubMed
Barbedo, M. B., Ricci, R., Jimenez, M. C., Cunha, M. G., Yazdani, S. S., Chitnis, C. E., Rodrigues, M. M. and Soares, I. S. (2007). Comparative recognition by human IgG antibodies of recombinant proteins representing three asexual erythrocytic stage vaccine candidates of Plasmodium vivax. Memorias do Instituto Oswaldo Cruz 102, 335339.CrossRefGoogle ScholarPubMed
Bastos, M. S., da Silva-Nunes, M., Malafronte, R. S., Hoffmann, E. H., Wunderlich, G., Moraes, S. L. and Ferreira, M. U. (2007). Antigenic polymorphism and naturally acquired antibodies to Plasmodium vivax merozoite surface protein 1 in rural Amazonians. Clinical Vaccine Immunology 14, 12491259.CrossRefGoogle ScholarPubMed
Bauer, T. and Jilg, W. (2006). Hepatitis B surface antigen-specific T and B cell memory in individuals who had lost protective antibodies after hepatitis B vaccination. Vaccine 24, 572577.CrossRefGoogle Scholar
Beeson, J. G., Osier, F. H. and Engwerda, C. R. (2008). Recent insights into humoral and cellular immune responses against malaria. Trends in Parasitology 24, 578584.CrossRefGoogle ScholarPubMed
Berenzon, D., Schwenk, R. J., Letellier, L., Guebre-Xabier, M., Williams, J. and Krzych, U. (2003). Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. Journal of Immunology 171, 20242034.CrossRefGoogle ScholarPubMed
Bernasconi, N. L., Traggiai, E. and Lanzavecchia, A. (2002). Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 21992202.CrossRefGoogle ScholarPubMed
Bilsborough, J., Carlisle, M. and Good, M. F. (1993). Identification of Caucasian CD4 T cell epitopes on the circumsporozoite protein of Plasmodium vivax. T cell memory. Journal of Immunology 151, 890899.CrossRefGoogle ScholarPubMed
Borges, Q. I., Fontes, C. J. and Damazo, A. S. (2013). Analysis of lymphocytes in patients with Plasmodium vivax malaria and its relation to the annexin-A1 and IL-10. Malaria Journal 12, 455.CrossRefGoogle Scholar
Bottiger, M., Gustavsson, O. and Svensson, A. (1998). Immunity to tetanus, diphtheria and poliomyelitis in the adult population of Sweden in 1991. International Journal of Epidemiology 27, 916925.CrossRefGoogle ScholarPubMed
Boyd, M. F. (1947). A review of studies on immunity to vivax malaria. Journal of National Malaria Society 6, 1231.Google ScholarPubMed
Bozdech, Z., Mok, S., Hu, G., Imwong, M., Jaidee, A., Russell, B., Ginsburg, H., Nosten, F., Day, N. P., White, N. J., Carlton, J. M. and Preiser, P. R. (2008). The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proceedings of the National Academy of Sciences USA 105, 1629016295.CrossRefGoogle ScholarPubMed
Braga, E. M., Fontes, C. J. and Krettli, A. U. (1998). Persistence of humoral response against sporozoite and blood-stage malaria antigens 7 years after a brief exposure to Plasmodium vivax. Journal of Infectious Diseases 177, 11321135.CrossRefGoogle ScholarPubMed
Braga, E. M., Barros, R. M., Reis, T. A., Fontes, C. J., Morais, C. G., Martins, M. S. and Krettli, A. U. (2002a). Association of the IgG response to Plasmodium falciparum merozoite protein (C-terminal 19 kD) with clinical immunity to malaria in the Brazilian Amazon region. American Journal of Tropical Medicine and Hygiene 66, 461466.CrossRefGoogle Scholar
Braga, E. M., Carvalho, L. H., Fontes, C. J. and Krettli, A. U. (2002b). Low cellular response in vitro among subjects with long-term exposure to malaria transmission in Brazilian endemic areas. American Journal of Tropical Medicine and Hygiene 66, 299303.CrossRefGoogle ScholarPubMed
Branch, O., Casapia, W. M., Gamboa, D. V., Hernandez, J. N., Alava, F. F., Roncal, N., Alvarez, E., Perez, E. J. and Gotuzzo, E. (2005). Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malaria Journal 4, 27.CrossRefGoogle Scholar
Bueno, L. L., Morais, C. G., Soares, I. S., Bouillet, L. E., Bruna-Romero, O., Fontes, C. J., Fujiwara, R. T. and Braga, E. M. (2009). Plasmodium vivax recombinant vaccine candidate AMA-1 plays an important role in adaptive immune response eliciting differentiation of dendritic cells. Vaccine 27, 55815588.CrossRefGoogle ScholarPubMed
Bueno, L. L., Morais, C. G., Araujo, F. F., Gomes, J. A., Correa-Oliveira, R., Soares, I. S., Lacerda, M. V., Fujiwara, R. T. and Braga, E. M. (2010). Plasmodium vivax: induction of CD4+CD25+FoxP3+ regulatory T cells during infection are directly associated with level of circulating parasites. PLoS ONE 5, e9623.CrossRefGoogle ScholarPubMed
Bueno, L. L., Lobo, F. P., Morais, C. G., Mourao, L. C., de Avila, R. A., Soares, I. S., Fontes, C. J., Lacerda, M. V., Chavez Olortegui, C., Bartholomeu, D. C., Fujiwara, R. T. and Braga, E. M. (2011). Identification of a highly antigenic linear B cell epitope within Plasmodium vivax apical membrane antigen 1 (AMA-1). PLoS ONE 6, e21289.CrossRefGoogle Scholar
Camargo, E. P., Alves, F. and Pereira da Silva, L. H. (1999). Symptomless Plasmodium vivax infections in native Amazonians. Lancet 353, 14151416.CrossRefGoogle ScholarPubMed
Carlton, J. M., Adams, J. H., Silva, J. C., Bidwell, S. L., Lorenzi, H., Caler, E., Crabtree, J., Angiuoli, S. V., Merino, E. F., Amedeo, P., Cheng, Q., Coulson, R. M., Crabb, B. S., Del Portillo, H. A., Essien, K., Feldblyum, T. V., Fernandez-Becerra, C., Gilson, P. R., Gueye, A. H., Guo, X., Kang'a, S., Kooij, T. W., Korsinczky, M., Meyer, E. V., Nene, V., Paulsen, I., White, O., Ralph, S. A., Ren, Q., Sargeant, T. J. et al. (2008). Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757763.CrossRefGoogle ScholarPubMed
Carvalho, L. H., Fontes, C. J., Fernandes, A. A., Marinuzzi, H. C. and Krettli, A. U. (1997). Cross-reactive cellular immune response to circumsporozoite proteins of Plasmodium vivax and P. falciparum in malaria-exposed individuals. Parasite Immunology 19, 4759.CrossRefGoogle ScholarPubMed
Carvalho, L. H., Fontes, C. J. and Krettli, A. U. (1999). Cellular responses to Plasmodium falciparum major surface antigens and their relationship to human activities associated with malaria transmission. American Journal of Tropical Medicine and Hygiene 60, 674679.CrossRefGoogle ScholarPubMed
Cavasini, C. E., Mattos, L. C., Couto, A. A., Bonini-Domingos, C. R., Valencia, S. H., Neiras, W. C., Alves, R. T., Rossit, A. R., Castilho, L. and Machado, R. L. (2007). Plasmodium vivax infection among Duffy antigen-negative individuals from the Brazilian Amazon region: an exception? Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 10421044.CrossRefGoogle ScholarPubMed
Ceravolo, I. P., Bruna-Romero, O., Braga, E. M., Fontes, C. J., Brito, C. F., Souza, J. M., Krettli, A. U., Adams, J. H. and Carvalho, L. H. (2005). Anti-Plasmodium vivax duffy binding protein antibodies measure exposure to malaria in the Brazilian Amazon. American Journal of Tropical Medicine and Hygiene 72, 675681.CrossRefGoogle ScholarPubMed
Ceravolo, I. P., Souza-Silva, F. A., Fontes, C. J., Braga, E. M., Madureira, A. P., Krettli, A. U., Souza, J. M., Brito, C. F., Adams, J. H. and Carvalho, L. H. (2008). Inhibitory properties of the antibody response to Plasmodium vivax Duffy binding protein in an area with unstable malaria transmission. Scandinavian Journal of Immunology 67, 270278.CrossRefGoogle Scholar
Ceravolo, I. P., Sanchez, B. A., Sousa, T. N., Guerra, B. M., Soares, I. S., Braga, E. M., McHenry, A. M., Adams, J. H., Brito, C. F. and Carvalho, L. H. (2009). Naturally acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein are short-lived and allele-specific following a single malaria infection. Clinical & Experimental Immunology 156, 502510.CrossRefGoogle ScholarPubMed
Chen, J. H., Jung, J. W., Wang, Y., Ha, K. S., Lu, F., Lim, C. S., Takeo, S., Tsuboi, T. and Han, E. T. (2010). Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. Journal of Proteome Research 9, 64796489.CrossRefGoogle ScholarPubMed
Chitnis, C. E. and Miller, L. H. (1994). Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. Journal of Experimental Medicine 180, 497506.CrossRefGoogle ScholarPubMed
Chitnis, C. E., Chaudhuri, A., Horuk, R., Pogo, A. O. and Miller, L. H. (1996). The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. Journal of Experimental Medicine 184, 15311536.CrossRefGoogle ScholarPubMed
Chootong, P., Ntumngia, F. B., VanBuskirk, K. M., Xainli, J., Cole-Tobian, J. L., Campbell, C. O., Fraser, T. S., King, C. L. and Adams, J. H. (2010). Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infection and Immunity 78, 10891095.CrossRefGoogle ScholarPubMed
Chootong, P., Panichakul, T., Permmongkol, C., Barnes, S. J., Udomsangpetch, R. and Adams, J. H. (2012). Characterization of inhibitory anti-Duffy binding protein II immunity: approach to Plasmodium vivax vaccine development in Thailand. PLoS ONE 7, e35769.CrossRefGoogle ScholarPubMed
Chuangchaiya, S., Jangpatarapongsa, K., Chootong, P., Sirichaisinthop, J., Sattabongkot, J., Pattanapanyasat, K., Chotivanich, K., Troye-Blomberg, M., Cui, L. and Udomsangpetch, R. (2010). Immune response to Plasmodium vivax has a potential to reduce malaria severity. Clinical & Experimental Immunology 160, 233239.CrossRefGoogle Scholar
Cohen, S., Mc, G. I. and Carrington, S. (1961). Gamma-globulin and acquired immunity to human malaria. Nature 192, 733737.CrossRefGoogle ScholarPubMed
Cole-Tobian, J. and King, C. L. (2003). Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Molecular and Biochemical Parasitology 127, 121132.CrossRefGoogle ScholarPubMed
Cole-Tobian, J. L., Cortes, A., Baisor, M., Kastens, W., Xainli, J., Bockarie, M., Adams, J. H. and King, C. L. (2002). Age-acquired immunity to a Plasmodium vivax invasion ligand, the duffy binding protein. Journal of Infectious Diseases 186, 531539.CrossRefGoogle ScholarPubMed
Coleman, R. E., Kumpitak, C., Ponlawat, A., Maneechai, N., Phunkitchar, V., Rachapaew, N., Zollner, G. and Sattabongkot, J. (2004). Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles dirus mosquitoes in western Thailand. Journal of Medical Entomology 41, 201208.CrossRefGoogle ScholarPubMed
Crotty, S. and Ahmed, R. (2004). Immunological memory in humans. Seminars in Immunology 16, 197203.CrossRefGoogle ScholarPubMed
Crotty, S., Felgner, P., Davies, H., Glidewell, J., Villarreal, L. and Ahmed, R. (2003). Cutting edge: long-term B cell memory in humans after smallpox vaccination. Journal of Immunology 171, 49694973.CrossRefGoogle ScholarPubMed
Cutts, J. C., Powell, R., Agius, P. A., Beeson, J. G., Simpson, J. A. and Fowkes, F. J. (2014). Immunological markers of Plasmodium vivax exposure and immunity: a systematic review and meta-analysis. BMC Medicine 12, 150.CrossRefGoogle ScholarPubMed
da Costa, A. G., Antonelli, L. R., Costa, P. A., Pimentel, J. P., Garcia, N. P., Tarrago, A. M., dos Santos Mdo, P., Nogueira, P. A., Hekcmann, M. I., Sadahiro, A., Teixeira-Carvalho, A., Martins-Filho, O. A. and Malheiro, A. (2014). The robust and modulated biomarker network elicited by the Plasmodium vivax infection is mainly mediated by the IL-6/IL-10 axis and is associated with the parasite load. Journal of Immunology Research 2014, 318250.Google ScholarPubMed
da Silva-Nunes, M., Codeco, C. T., Malafronte, R. S., da Silva, N. S., Juncansen, C., Muniz, P. T. and Ferreira, M. U. (2008). Malaria on the Amazonian frontier: transmission dynamics, risk factors, spatial distribution, and prospects for control. American Journal of Tropical Medicine and Hygiene 79, 624635.CrossRefGoogle ScholarPubMed
Davies, D. H., Liang, X., Hernandez, J. E., Randall, A., Hirst, S., Mu, Y., Romero, K. M., Nguyen, T. T., Kalantari-Dehaghi, M., Crotty, S., Baldi, P., Villarreal, L. P. and Felgner, P. L. (2005). Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proceedings of National Academy of Sciences U S A 102, 547552.CrossRefGoogle ScholarPubMed
Day, N. P., Hien, T. T., Schollaardt, T., Loc, P. P., Chuong, L. V., Chau, T. T., Mai, N. T., Phu, N. H., Sinh, D. X., White, N. J. and Ho, M. (1999). The prognostic and pathophysiologic role of pro- and anti-inflammatory cytokines in severe malaria. Journal of Infectious Diseases 180, 12881297.CrossRefGoogle Scholar
de Zoysa, A. P., Herath, P. R., Abhayawardana, T. A., Padmalal, U. K. and Mendis, K. N. (1988). Modulation of human malaria transmission by anti-gamete transmission blocking immunity. Transactions of the Royal Society of Tropical Medicines and Hygiene 82, 548553.CrossRefGoogle ScholarPubMed
del Portillo, H. A., Longacre, S., Khouri, E. and David, P. H. (1991). Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proceedings of the National Academy of Sciences U S A 88, 40304034.CrossRefGoogle ScholarPubMed
del Portillo, H. A., Levitus, G., Camargo, L. M., Ferreira, M. U. and Mertens, F. (1992). Human IgG responses against the N-terminal region of the Merozoite Surface Protein 1 of Plasmodium vivax. Memorias do Instituto Oswaldo Cruz 87 (Suppl 3), 7784.CrossRefGoogle ScholarPubMed
Dias, S., Somarathna, M., Manamperi, A., Escalante, A. A., Gunasekera, A. M. and Udagama, P. V. (2011). Evaluation of the genetic diversity of domain II of Plasmodium vivax Apical Membrane Antigen 1 (PvAMA-1) and the ensuing strain-specific immune responses in patients from Sri Lanka. Vaccine 29, 74917504.CrossRefGoogle ScholarPubMed
Diggs, C. L. and Sadun, E. H. (1965). Serological cross-reactivity between Plasmodium vivax and plasmodium falciparum as determined by a modified fluorescent antibody test. Experimental Parasitology 16, 217223.CrossRefGoogle ScholarPubMed
Dodoo, D., Omer, F. M., Todd, J., Akanmori, B. D., Koram, K. A. and Riley, E. M. (2002). Absolute levels and ratios of pro-inflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. Journal of Infectious Diseases 185, 971979.CrossRefGoogle Scholar
Egan, A. F., Burghaus, P., Druilhe, P., Holder, A. A. and Riley, E. M. (1999). Human antibodies to the 19kDa C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 inhibit parasite growth in vitro. Parasite Immunology 21, 133139.CrossRefGoogle Scholar
Fernandes, A. A., Carvalho, L. J., Zanini, G. M., Ventura, A. M., Souza, J. M., Cotias, P. M., Silva-Filho, I. L. and Daniel-Ribeiro, C. T. (2008). Similar cytokine responses and degrees of anemia in patients with Plasmodium falciparum and Plasmodium vivax infections in the Brazilian Amazon region. Clinical and Vaccine Immunology 15, 650658.CrossRefGoogle ScholarPubMed
Fernandez-Arias, C., Lopez, J. P., Hernandez-Perez, J. N., Bautista-Ojeda, M. D., Branch, O. and Rodriguez, A. (2013). Malaria inhibits surface expression of complement receptor 1 in monocytes/macrophages, causing decreased immune complex internalization. Journal of Immunology 190, 33633372.CrossRefGoogle ScholarPubMed
Fernandez-Becerra, C., Sanz, S., Brucet, M., Stanisic, D. I., Alves, F. P., Camargo, E. P., Alonso, P. L., Mueller, I. and del Portillo, H. A. (2010). Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay. Malaria Journal 9, 29.CrossRefGoogle Scholar
Finney, O. C., Danziger, S. A., Molina, D. M., Vignali, M., Takagi, A., Ji, M., Stanisic, D. I., Siba, P. M., Liang, X., Aitchison, J. D., Mueller, I., Gardner, M. J. and Wang, R. (2014). Predicting anti-disease immunity using proteome arrays and sera from children naturally exposed to malaria. Molecular & Cellular Proteomics 13, 26462660.CrossRefGoogle Scholar
Fraser, T., Michon, P., Barnwell, J. W., Noe, A. R., Al-Yaman, F., Kaslow, D. C. and Adams, J. H. (1997). Expression and serologic activity of a soluble recombinant Plasmodium vivax Duffy binding protein. Infection and Immunity 65, 27722777.CrossRefGoogle ScholarPubMed
Gamage-Mendis, A. C., Rajakaruna, J., Carter, R. and Mendis, K. N. (1992). Transmission blocking immunity to human Plasmodium vivax malaria in an endemic population in Kataragama, Sri Lanka. Parasite Immunology 14, 385396.CrossRefGoogle Scholar
Garg, S., Chauhan, S. S., Singh, N. and Sharma, Y. D. (2008). Immunological responses to a 39·8kDa Plasmodium vivax tryptophan-rich antigen (PvTRAg39·8) among humans. Microbes and Infection 10, 10971105.CrossRefGoogle ScholarPubMed
Gething, P. W., Elyazar, I. R., Moyes, C. L., Smith, D. L., Battle, K. E., Guerra, C. A., Patil, A. P., Tatem, A. J., Howes, R. E., Myers, M. F., George, D. B., Horby, P., Wertheim, H. F., Price, R. N., Mueller, I., Baird, J. K. and Hay, S. I. (2012). A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Neglected Tropical Diseases 6, e1814.CrossRefGoogle ScholarPubMed
Goncalves, R. M., Salmazi, K. C., Santos, B. A., Bastos, M. S., Rocha, S. C., Boscardin, S. B., Silber, A. M., Kallas, E. G., Ferreira, M. U. and Scopel, K. K. (2010). CD4+ CD25+ Foxp3+ regulatory T cells, dendritic cells, and circulating cytokines in uncomplicated malaria: do different parasite species elicit similar host responses? Infection and Immunity 78, 47634772.CrossRefGoogle ScholarPubMed
Goncalves, R. M., Scopel, K. K., Bastos, M. S. and Ferreira, M. U. (2012). Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum? PLoS ONE 7, e44394.CrossRefGoogle ScholarPubMed
Goonewardene, R., Carter, R., Gamage, C. P., Del Giudice, G., David, P. H., Howie, S. and Mendis, K. N. (1990). Human T cell proliferative responses to Plasmodium vivax antigens: evidence of immunosuppression following prolonged exposure to endemic malaria. European Journal of Immunology 20, 13871391.CrossRefGoogle Scholar
Grau, G. E., Taylor, T. E., Molyneux, M. E., Wirima, J. J., Vassalli, P., Hommel, M. and Lambert, P. H. (1989). Tumor necrosis factor and disease severity in children with falciparum malaria. New England Journal of Medicine 320, 15861591.CrossRefGoogle ScholarPubMed
Gray, D. and Skarvall, H. (1988). B-cell memory is short-lived in the absence of antigen. Nature 336, 7073.CrossRefGoogle ScholarPubMed
Grimberg, B. T., Udomsangpetch, R., Xainli, J., McHenry, A., Panichakul, T., Sattabongkot, J., Cui, L., Bockarie, M., Chitnis, C., Adams, J., Zimmerman, P. A. and King, C. L. (2007). Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Medicine 4, e337.CrossRefGoogle ScholarPubMed
Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S. H., Onai, N., Schraml, B. U., Segura, E., Tussiwand, R. and Yona, S. (2014). Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Reviews Immunology 14, 571578.CrossRefGoogle ScholarPubMed
Gunewardena, D. M., Carter, R. and Mendis, K. N. (1994). Patterns of acquired anti-malarial immunity in Sri Lanka. Memorias do Instituto Oswaldo Cruz 89 (Suppl 2), 6365.CrossRefGoogle ScholarPubMed
Hammarlund, E., Lewis, M. W., Hansen, S. G., Strelow, L. I., Nelson, J. A., Sexton, G. J., Hanifin, J. M. and Slifka, M. K. (2003). Duration of antiviral immunity after smallpox vaccination. Nature Medicine 9, 11311137.CrossRefGoogle ScholarPubMed
Hansen, D. S. and Schofield, L. (2010). Natural regulatory T cells in malaria: host or parasite allies? PLoS Pathogens 6, e1000771.CrossRefGoogle ScholarPubMed
Harris, I., Sharrock, W. W., Bain, L. M., Gray, K. A., Bobogare, A., Boaz, L., Lilley, K., Krause, D., Vallely, A., Johnson, M. L., Gatton, M. L., Shanks, G. D. and Cheng, Q. (2010). A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malaria Journal 9, 254.CrossRefGoogle Scholar
Hemmer, C. J., Holst, F. G., Kern, P., Chiwakata, C. B., Dietrich, M. and Reisinger, E. C. (2006). Stronger host response per parasitized erythrocyte in Plasmodium vivax or ovale than in Plasmodium falciparum malaria. Tropical Medicine & International Health 11, 817823.CrossRefGoogle ScholarPubMed
Herrera, S., Escobar, P., de Plata, C., Avila, G. I., Corradin, G. and Herrera, M. A. (1992). Human recognition of T cell epitopes on the Plasmodium vivax circumsporozoite protein. Journal of Immunology 148, 39863990.CrossRefGoogle ScholarPubMed
Hoffman, S. L., Isenbarger, D., Long, G. W., Sedegah, M., Szarfman, A., Waters, L., Hollingdale, M. R., van der Meide, P. H., Finbloom, D. S. and Ballou, W. R. (1989). Sporozoite vaccine induces genetically restricted T cell elimination of malaria from hepatocytes. Science 244, 10781081.CrossRefGoogle ScholarPubMed
Holder, A. A. (2009). The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology 136, 14451456.CrossRefGoogle ScholarPubMed
Hugosson, E., Montgomery, S. M., Premji, Z., Troye-Blomberg, M. and Bjorkman, A. (2004). Higher IL-10 levels are associated with less effective clearance of Plasmodium falciparum parasites. Parasite Immunology 26, 111117.CrossRefGoogle ScholarPubMed
Illingworth, J., Butler, N. S., Roetynck, S., Mwacharo, J., Pierce, S. K., Bejon, P., Crompton, P. D., Marsh, K. and Ndungu, F. M. (2013). Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. Journal of Immunology 190, 10381047.CrossRefGoogle ScholarPubMed
Jain, V., Singh, P. P., Silawat, N., Patel, R., Saxena, A., Bharti, P. K., Shukla, M., Biswas, S. and Singh, N. (2010). A preliminary study on pro- and anti-inflammatory cytokine profiles in Plasmodium vivax malaria patients from central zone of India. Acta Tropica 113, 263268.CrossRefGoogle Scholar
Jangpatarapongsa, K., Sirichaisinthop, J., Sattabongkot, J., Cui, L., Montgomery, S. M., Looareesuwan, S., Troye-Blomberg, M. and Udomsangpetch, R. (2006). Memory T cells protect against Plasmodium vivax infection. Microbes and Infection 8, 680686.CrossRefGoogle ScholarPubMed
Jangpatarapongsa, K., Chootong, P., Sattabongkot, J., Chotivanich, K., Sirichaisinthop, J., Tungpradabkul, S., Hisaeda, H., Troye-Blomberg, M., Cui, L. and Udomsangpetch, R. (2008). Plasmodium vivax parasites alter the balance of myeloid and plasmacytoid dendritic cells and the induction of regulatory T cells. European Journal of Immunology 38, 26972705.CrossRefGoogle ScholarPubMed
Jangpatarapongsa, K., Xia, H., Fang, Q., Hu, K., Yuan, Y., Peng, M., Gao, Q., Sattabongkot, J., Cui, L., Li, B. and Udomsangpetch, R. (2012). Immunity to malaria in Plasmodium vivax infection: a study in central China. PLoS ONE 7, e45971.CrossRefGoogle ScholarPubMed
Kaneko, A., Chaves, L. F., Taleo, G., Kalkoa, M., Isozumi, R., Wickremasinghe, R., Perlmann, H., Takeo, S., Tsuboi, T., Tachibana, S., Kimura, M., Bjorkman, A., Troye-Blomberg, M., Tanabe, K. and Drakeley, C. (2014). Characteristic age distribution of Plasmodium vivax infections after malaria elimination on Aneityum Island, Vanuatu. Infection and Immunity 82, 243252.CrossRefGoogle ScholarPubMed
Kano, F. S., Sanchez, B. A., Sousa, T. N., Tang, M. L., Saliba, J., Oliveira, F. M., Nogueira, P. A., Goncalves, A. Q., Fontes, C. J., Soares, I. S., Brito, C. F., Rocha, R. S. and Carvalho, L. H. (2012). Plasmodium vivax Duffy binding protein: baseline antibody responses and parasite polymorphisms in a well-consolidated settlement of the Amazon Region. Tropical Medicine & International Health 17, 9891000.CrossRefGoogle Scholar
Karunaweera, N. D., Grau, G. E., Gamage, P., Carter, R. and Mendis, K. N. (1992). Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proceedings of the National Academy of Sciences USA 89, 32003203.CrossRefGoogle ScholarPubMed
Karunaweera, N. D., Carter, R., Grau, G. E. and Mendis, K. N. (1998). Demonstration of anti-disease immunity to Plasmodium vivax malaria in Sri Lanka using a quantitative method to assess clinical disease. American Journal of Tropical Medicine and Hygiene 58, 204210.CrossRefGoogle ScholarPubMed
King, C. L., Michon, P., Shakri, A. R., Marcotty, A., Stanisic, D., Zimmerman, P. A., Cole-Tobian, J. L., Mueller, I. and Chitnis, C. E. (2008). Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proceedings of the National Academy of Sciences U S A 105, 83638368.CrossRefGoogle ScholarPubMed
King, C. L., Adams, J. H., Xianli, J., Grimberg, B. T., McHenry, A. M., Greenberg, L. J., Siddiqui, A., Howes, R. E., da Silva-Nunes, M., Ferreira, M. U. and Zimmerman, P. A. (2011). Fy(a)/Fy(b) antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria. Proceedings of the National Academy of Sciences U S A 108, 2011320118.CrossRefGoogle Scholar
Koch, R. (1900). Professor Koch's investigations on Malaria: fourth report to the Colonial Department of the German Colonial Office. British Medical Journal 1, 15971598.Google Scholar
Koepfli, C., Colborn, K. L., Kiniboro, B., Lin, E., Speed, T. P., Siba, P. M., Felger, I. and Mueller, I. (2013). A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in papua new guinean children. PLoS Neglected Tropical Diseases 7, e2403.CrossRefGoogle ScholarPubMed
Kremsner, P. G., Winkler, S., Brandts, C., Wildling, E., Jenne, L., Graninger, W., Prada, J., Bienzle, U., Juillard, P. and Grau, G. E. (1995). Prediction of accelerated cure in Plasmodium falciparum malaria by the elevated capacity of tumor necrosis factor production. American Journal of Tropical Medicines and Hygiene 53, 532538.CrossRefGoogle ScholarPubMed
Kwiatkowski, D., Hill, A. V., Sambou, I., Twumasi, P., Castracane, J., Manogue, K. R., Cerami, A., Brewster, D. R. and Greenwood, B. M. (1990). TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 336, 12011204.CrossRefGoogle ScholarPubMed
Kwiatkowski, D., Molyneux, M. E., Stephens, S., Curtis, N., Klein, N., Pointaire, P., Smit, M., Allan, R., Brewster, D. R., Grau, G. E. and Greenwood, B. M. (1993). Anti-TNF therapy inhibits fever in cerebral malaria. Quarterly Journal of Medicine 86, 9198.Google ScholarPubMed
Ladeia-Andrade, S., Ferreira, M. U., Scopel, K. K., Braga, E. M., Bastos Mda, S., Wunderlich, G. and Coura, J. R. (2007). Naturally acquired antibodies to merozoite surface protein (MSP)-1(19) and cumulative exposure to Plasmodium falciparum and Plasmodium vivax in remote populations of the Amazon Basin of Brazil. Memorias do Instituto Oswaldo Cruz 102, 943951.CrossRefGoogle Scholar
Ladeia-Andrade, S., Ferreira, M. U., de Carvalho, M. E., Curado, I. and Coura, J. R. (2009). Age-dependent acquisition of protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. American Journal of Tropical Medicine and Hygiene 80, 452459.CrossRefGoogle ScholarPubMed
Leoratti, F. M., Trevelin, S. C., Cunha, F. Q., Rocha, B. C., Costa, P. A., Gravina, H. D., Tada, M. S., Pereira, D. B., Golenbock, D. T., Antonelli, L. R. and Gazzinelli, R. T. (2012). Neutrophil paralysis in Plasmodium vivax malaria. PLoS Neglected Tropical Diseases 6, e1710.CrossRefGoogle ScholarPubMed
Lim, K. J., Park, J. W., Yeom, J. S., Lee, Y. H., Yoo, S. B., Oh, J. H., Sohn, M. J., Bahk, Y. Y. and Kim, Y. S. (2004). Humoral responses against the C-terminal region of merozoite surface protein 1 can be remembered for more than 30 years in persons exposed to Plasmodium vivax. Parasitology Research 92, 384389.Google ScholarPubMed
Lima-Junior, J. C., Tran, T. M., Meyer, E. V., Singh, B., De-Simone, S. G., Santos, F., Daniel-Ribeiro, C. T., Moreno, A., Barnwell, J. W., Galinski, M. R. and Oliveira-Ferreira, J. (2008). Naturally acquired humoral and cellular immune responses to Plasmodium vivax merozoite surface protein 9 in Northwestern Amazon individuals. Vaccine 26, 66456654.CrossRefGoogle ScholarPubMed
Lima-Junior, J. C., Jiang, J., Rodrigues-da-Silva, R. N., Banic, D. M., Tran, T. M., Ribeiro, R. Y., Meyer, V. S., De-Simone, S. G., Santos, F., Moreno, A., Barnwell, J. W., Galinski, M. R. and Oliveira-Ferreira, J. (2011). B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax merozoite surface protein-3alpha (PvMSP-3alpha) in malaria exposed individuals from Brazilian Amazon. Vaccine 29, 18011811.CrossRefGoogle Scholar
Lima-Junior, J. C., Rodrigues-da-Silva, R. N., Banic, D. M., Jiang, J., Singh, B., Fabricio-Silva, G. M., Porto, L. C., Meyer, E. V., Moreno, A., Rodrigues, M. M., Barnwell, J. W., Galinski, M. R. and de Oliveira-Ferreira, J. (2012). Influence of HLA-DRB1 and HLA-DQB1 alleles on IgG antibody response to the P. vivax MSP-1, MSP-3alpha and MSP-9 in individuals from Brazilian endemic area. PLoS ONE 7, e36419.CrossRefGoogle Scholar
Lin, E., Kiniboro, B., Gray, L., Dobbie, S., Robinson, L., Laumaea, A., Schopflin, S., Stanisic, D., Betuela, I., Blood-Zikursh, M., Siba, P., Felger, I., Schofield, L., Zimmerman, P. and Mueller, I. (2010). Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua New Guinean children. PLoS ONE 5, e9047.Google Scholar
Lu, F., Li, J., Wang, B., Cheng, Y., Kong, D. H., Cui, L., Ha, K. S., Sattabongkot, J., Tsuboi, T. and Han, E. T. (2014). Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). Journal of Proteomics 102, 6682.CrossRefGoogle ScholarPubMed
Luxemburger, C., Thwai, K. L., White, N. J., Webster, H. K., Kyle, D. E., Maelankirri, L., Chongsuphajaisiddhi, T. and Nosten, F. (1996). The epidemiology of malaria in a Karen population on the western border of Thailand. Transactions of the Royal Society of Tropical Medicines and Hygiene 90, 105111.CrossRefGoogle Scholar
Maestre, A., Muskus, C., Duque, V., Agudelo, O., Liu, P., Takagi, A., Ntumngia, F. B., Adams, J. H., Sim, K. L., Hoffman, S. L., Corradin, G., Velez, I. D. and Wang, R. (2010). Acquired antibody responses against Plasmodium vivax infection vary with host genotype for duffy antigen receptor for chemokines (DARC). PLoS ONE 5, e11437.CrossRefGoogle ScholarPubMed
Maitland, K., Williams, T. N., Bennett, S., Newbold, C. I., Peto, T. E., Viji, J., Timothy, R., Clegg, J. B., Weatherall, D. J. and Bowden, D. K. (1996). The interaction between Plasmodium falciparum and P. vivax in children on Espiritu Santo island, Vanuatu. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 614620.CrossRefGoogle Scholar
Manz, R. A., Thiel, A. and Radbruch, A. (1997). Lifetime of plasma cells in the bone marrow. Nature 388, 133134.CrossRefGoogle ScholarPubMed
Manz, R. A., Lohning, M., Cassese, G., Thiel, A. and Radbruch, A. (1998). Survival of long-lived plasma cells is independent of antigen. International Immunology 10, 17031711.CrossRefGoogle ScholarPubMed
Maruyama, M., Lam, K. P. and Rajewsky, K. (2000). Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636642.CrossRefGoogle ScholarPubMed
Medina, T. S., Costa, S. P., Oliveira, M. D., Ventura, A. M., Souza, J. M., Gomes, T. F., Vallinoto, A. C., Povoa, M. M., Silva, J. S. and Cunha, M. G. (2011). Increased interleukin-10 and interferon-gamma levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malaria Journal 10, 264.CrossRefGoogle Scholar
Mehrizi, A. A., Zakeri, S., Salmanian, A. H., Sanati, M. H. and Djadid, N. D. (2009). IgG subclasses pattern and high-avidity antibody to the C-terminal region of merozoite surface protein 1 of Plasmodium vivax in an unstable hypoendemic region in Iran. Acta Tropica 112, 17.CrossRefGoogle Scholar
Menard, D., Barnadas, C., Bouchier, C., Henry-Halldin, C., Gray, L. R., Ratsimbasoa, A., Thonier, V., Carod, J. F., Domarle, O., Colin, Y., Bertrand, O., Picot, J., King, C. L., Grimberg, B. T., Mercereau-Puijalon, O. and Zimmerman, P. A. (2010). Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proceedings of the National Academy of Sciences U S A 107, 59675971.CrossRefGoogle ScholarPubMed
Mendes, C., Dias, F., Figueiredo, J., Mora, V. G., Cano, J., de Sousa, B., do Rosario, V. E., Benito, A., Berzosa, P. and Arez, A. P. (2011). Duffy negative antigen is no longer a barrier to Plasmodium vivax –molecular evidences from the African West Coast (Angola and Equatorial Guinea). PLoS Neglected Tropical Diseases 5, e1192;.CrossRefGoogle ScholarPubMed
Mendis, K. N., Munesinghe, Y. D., de Silva, Y. N., Keragalla, I. and Carter, R. (1987). Malaria transmission-blocking immunity induced by natural infections of Plasmodium vivax in humans. Infection and Immunity 55, 369372.CrossRefGoogle ScholarPubMed
Mendonca, V. R., Queiroz, A. T., Lopes, F. M., Andrade, B. B. and Barral-Netto, M. (2013). Networking the host immune response in Plasmodium vivax malaria. Malaria Journal 12, 69.CrossRefGoogle ScholarPubMed
Michon, P., Fraser, T. and Adams, J. H. (2000). Naturally acquired and vaccine-elicited antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein. Infection and Immunity 68, 31643171.CrossRefGoogle ScholarPubMed
Michon, P., Cole-Tobian, J. L., Dabod, E., Schoepflin, S., Igu, J., Susapu, M., Tarongka, N., Zimmerman, P. A., Reeder, J. C., Beeson, J. G., Schofield, L., King, C. L. and Mueller, I. (2007). The risk of malarial infections and disease in Papua New Guinean children. American Journal of Tropical Medicines and Hygiene 76, 9971008.CrossRefGoogle ScholarPubMed
Michon, P. A., Arevalo-Herrera, M., Fraser, T., Herrera, S. and Adams, J. H. (1998). Serologic responses to recombinant Plasmodium vivax Duffy binding protein in a Colombian village. American Journal of Tropical Medicine and Hygiene 59, 597599.CrossRefGoogle Scholar
Migot, F., Millet, P., Chougnet, C., Lepers, J. P. and Deloron, P. (1993). Humoral and cellular immune responses to the circumsporozoite protein of Plasmodium vivax in Madagascar. American Journal of Tropical Medicine and Hygiene 48, 524529.CrossRefGoogle Scholar
Mittra, P., Singh, N. and Sharma, Y. D. (2010). Plasmodium vivax: immunological properties of tryptophan-rich antigens PvTRAg 35·2 and PvTRAg 80·6. Microbes and Infection 12, 10191026.CrossRefGoogle ScholarPubMed
Molina, D. M., Finney, O. C., Arevalo-Herrera, M., Herrera, S., Felgner, P. L., Gardner, M. J., Liang, X. and Wang, R. (2012). Plasmodium vivax pre-erythrocytic-stage antigen discovery: exploiting naturally acquired humoral responses. American Journal of Tropical Medicine and Hygiene 87, 460469.CrossRefGoogle ScholarPubMed
Moncunill, G., Aponte, J. J., Nhabomba, A. J. and Dobano, C. (2013). Performance of multiplex commercial kits to quantify cytokine and chemokine responses in culture supernatants from Plasmodium falciparum stimulations. PLoS ONE 8, e52587.CrossRefGoogle ScholarPubMed
Morais, C. G., Soares, I. S., Carvalho, L. H., Fontes, C. J., Krettli, A. U. and Braga, E. M. (2005). IgG isotype to C-terminal 19 kDa of Plasmodium vivax merozoite surface protein 1 among subjects with different levels of exposure to malaria in Brazil. Parasitology Research 95, 420426.CrossRefGoogle Scholar
Morais, C. G., Soares, I. S., Carvalho, L. H., Fontes, C. J., Krettli, A. U. and Braga, E. M. (2006). Antibodies to Plasmodium vivax apical membrane antigen 1: persistence and correlation with malaria transmission intensity. American Journal of Tropical Medicine and Hygiene 75, 582587.CrossRefGoogle ScholarPubMed
Mourao, L. C., Morais, C. G., Bueno, L. L., Jimenez, M. C., Soares, I. S., Fontes, C. J., Guimaraes Lacerda, M. V., Xavier, M. S., Barnwell, J. W., Galinski, M. R. and Braga, E. M. (2012). Naturally acquired antibodies to Plasmodium vivax blood-stage vaccine candidates (PvMSP-1(1)(9) and PvMSP-3alpha(3)(5)(9)(-)(7)(9)(8) and their relationship with hematological features in malaria patients from the Brazilian Amazon. Microbes and Infection 14, 730739.CrossRefGoogle Scholar
Muellenbeck, M. F., Ueberheide, B., Amulic, B., Epp, A., Fenyo, D., Busse, C. E., Esen, M., Theisen, M., Mordmuller, B. and Wardemann, H. (2013). Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. Journal of Experimental Medicine 210, 389399.CrossRefGoogle ScholarPubMed
Mueller, I., Schoepflin, S., Smith, T. A., Benton, K. L., Bretscher, M. T., Lin, E., Kiniboro, B., Zimmerman, P. A., Speed, T. P., Siba, P. and Felger, I. (2012). Force of infection is key to understanding the epidemiology of Plasmodium falciparum malaria in Papua New Guinean children. Proceedings of the National Academy of Sciences USA 109, 1003010035.CrossRefGoogle ScholarPubMed
Mueller, I., Galinski, M. R., Tsuboi, T., Arevalo-Herrera, M., Collins, W. E. and King, C. L. (2013). Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Advances in Parasitology 81, 77131.CrossRefGoogle ScholarPubMed
Mufalo, B. C., Gentil, F., Bargieri, D. Y., Costa, F. T., Rodrigues, M. M. and Soares, I. S. (2008). Plasmodium vivax apical membrane antigen-1: comparative recognition of different domains by antibodies induced during natural human infection. Microbes and Infection 10, 12661273.CrossRefGoogle ScholarPubMed
Ndungu, F. M., Olotu, A., Mwacharo, J., Nyonda, M., Apfeld, J., Mramba, L. K., Fegan, G. W., Bejon, P. and Marsh, K. (2012). Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children. Proceedings of the National Academy of Sciences USA 109, 82478252.CrossRefGoogle ScholarPubMed
Nguyen, H. V., van den Eede, P., van Overmeir, C., Thang, N. D., Hung le, X., D'Alessandro, U. and Erhart, A. (2012). Marked age-dependent prevalence of symptomatic and patent infections and complexity of distribution of human Plasmodium species in central Vietnam. American Journal of Tropical Medicines and Hygiene 87, 989995.CrossRefGoogle ScholarPubMed
Nogueira, P. A., Alves, F. P., Fernandez-Becerra, C., Pein, O., Santos, N. R., Pereira da Silva, L. H., Camargo, E. P. and del Portillo, H. A. (2006). A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infection and Immunity 74, 27262733.CrossRefGoogle Scholar
Ochsenbein, A. F., Pinschewer, D. D., Sierro, S., Horvath, E., Hengartner, H. and Zinkernagel, R. M. (2000). Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proceedings of the National Academy of Sciences USA 97, 1326313268.CrossRefGoogle Scholar
Oliveira, T. R., Fernandez-Becerra, C., Jimenez, M. C., Del Portillo, H. A. and Soares, I. S. (2006). Evaluation of the acquired immune responses to Plasmodium vivax VIR variant antigens in individuals living in malaria-endemic areas of Brazil. Malaria Journal 5, 83.CrossRefGoogle ScholarPubMed
Park, J. W., Moon, S. H., Yeom, J. S., Lim, K. J., Sohn, M. J., Jung, W. C., Cho, Y. J., Jeon, K. W., Ju, W., Ki, C. S., Oh, M. D. and Choe, K. (2001). Naturally acquired antibody responses to the C-terminal region of merozoite surface protein 1 of Plasmodium vivax in Korea. Clinical and Diagnostic Laboratory Immunology 8, 1420.CrossRefGoogle Scholar
Peiris, J. S., Premawansa, S., Ranawaka, M. B., Udagama, P. V., Munasinghe, Y. D., Nanayakkara, M. V., Gamage, C. P., Carter, R., David, P. H. and Mendis, K. N. (1988). Monoclonal and polyclonal antibodies both block and enhance transmission of human Plasmodium vivax malaria. American Journal of Tropical Medicines and Hygiene 39, 2632.CrossRefGoogle ScholarPubMed
Phimpraphi, W., Paul, R. E., Yimsamran, S., Puangsa-art, S., Thanyavanich, N., Maneeboonyang, W., Prommongkol, S., Sornklom, S., Chaimungkun, W., Chavez, I. F., Blanc, H., Looareesuwan, S., Sakuntabhai, A. and Singhasivanon, P. (2008). Longitudinal study of Plasmodium falciparum and Plasmodium vivax in a Karen population in Thailand. Malaria Journal 7, 99.CrossRefGoogle Scholar
Pichyangkul, S., Yongvanitchit, K., Kum-arb, U., Hemmi, H., Akira, S., Krieg, A. M., Heppner, D. G., Stewart, V. A., Hasegawa, H., Looareesuwan, S., Shanks, G. D. and Miller, R. S. (2004). Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. Journal of Immunology 172, 49264933.CrossRefGoogle ScholarPubMed
Pinzon-Charry, A., Woodberry, T., Kienzle, V., McPhun, V., Minigo, G., Lampah, D. A., Kenangalem, E., Engwerda, C., Lopez, J. A., Anstey, N. M. and Good, M. F. (2013). Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. Journal of Experimental Medicine 210, 16351646.CrossRefGoogle ScholarPubMed
Pitabut, N., Panichakorn, J., Mahakunkijcharoen, Y., Hirunpetcharat, C., Looareesuwan, S. and Khusmith, S. (2007). IgG antibody profile to c-terminal region of Plasmodium vivax merozoite surface protein-1 in Thai individuals exposed to malaria. Southeast Asian Journal of Tropical Medicine and Public Health 38, 17.Google ScholarPubMed
Pombo, D. J., Lawrence, G., Hirunpetcharat, C., Rzepczyk, C., Bryden, M., Cloonan, N., Anderson, K., Mahakunkijcharoen, Y., Martin, L. B., Wilson, D., Elliott, S., Elliott, S., Eisen, D. P., Weinberg, J. B., Saul, A. and Good, M. F. (2002). Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610617.CrossRefGoogle ScholarPubMed
Praba-Egge, A. D., Montenegro, S., Arevalo-Herrera, M., Hopper, T., Herrera, S. and James, M. A. (2003). Human cytokine responses to meso-endemic malaria on the Pacific Coast of Colombia. Annals of Tropical Medicine and Parasitology 97, 327337.CrossRefGoogle ScholarPubMed
Price, R. N., Tjitra, E., Guerra, C. A., Yeung, S., White, N. J. and Anstey, N. M. (2007). Vivax malaria: neglected and not benign. American Journal of Tropical Medicine and Hygiene 77, 7987.CrossRefGoogle Scholar
Ramsey, J. M., Salinas, E. and Rodriguez, M. H. (1996). Acquired transmission-blocking immunity to Plasmodium vivax in a population of southern coastal Mexico. American Journal of Tropical Medicines and Hygiene 54, 458463.CrossRefGoogle Scholar
Ranawaka, M. B., Munesinghe, Y. D., de Silva, D. M., Carter, R. and Mendis, K. N. (1988). Boosting of transmission-blocking immunity during natural Plasmodium vivax infections in humans depends upon frequent reinfection. Infection and Immunity 56, 18201824.CrossRefGoogle ScholarPubMed
Ray, P., Ansari, M. A. and Sharma, Y. D. (1994). Plasmodium vivax: immune responses in a cross-section of the population in the Delhi area of India. American Journal of Tropical Medicines and Hygiene 51, 436443.CrossRefGoogle Scholar
Raza, A., Ghanchi, N. K., Sarwar Zubairi, A., Raheem, A., Nizami, S. and Beg, M. A. (2013). Tumor necrosis factor-alpha, interleukin-10, intercellular and vascular adhesion molecules are possible biomarkers of disease severity in complicated Plasmodium vivax isolates from Pakistan. PLoS ONE 8, e81363.CrossRefGoogle ScholarPubMed
Renia, L., Marussig, M. S., Grillot, D., Pied, S., Corradin, G., Miltgen, F., Del Giudice, G. and Mazier, D. (1991). In vitro activity of CD4+ and CD8+ T lymphocytes from mice immunized with a synthetic malaria peptide. Proceedings of the National Academy of Sciences USA 88, 79637967.CrossRefGoogle ScholarPubMed
Renia, L., Grillot, D., Marussig, M., Corradin, G., Miltgen, F., Lambert, P. H., Mazier, D. and Del Giudice, G. (1993). Effector functions of circumsporozoite peptide-primed CD4+ T cell clones against Plasmodium yoelii liver stages. Journal of Immunology 150, 14711478.CrossRefGoogle ScholarPubMed
Requena, P., Campo, J. J., Umbers, A. J., Ome, M., Wangnapi, R., Barrios, D., Robinson, L. J., Samol, P., Rosanas-Urgell, A., Ubillos, I., Mayor, A., Lopez, M., de Lazzari, E., Arevalo-Herrera, M., Fernandez-Becerra, C., del Portillo, H., Chitnis, C. E., Siba, P. M., Bardaji, A., Mueller, I., Rogerson, S., Menendez, C. and Dobano, C. (2014). Pregnancy and malaria exposure are associated with changes in the B cell pool and in plasma eotaxin levels. Journal of Immunology 193, 29712983.CrossRefGoogle Scholar
Riccio, E. K., Totino, P. R., Pratt-Riccio, L. R., Ennes-Vidal, V., Soares, I. S., Rodrigues, M. M., de Souza, J. M., Daniel-Ribeiro, C. T. and Ferreira-da-Cruz Mde, F. (2013). Cellular and humoral immune responses against the Plasmodium vivax MSP-1(1)(9) malaria vaccine candidate in individuals living in an endemic area in north-eastern Amazon region of Brazil. Malaria Journal 12, 326.CrossRefGoogle Scholar
Riley, E. M., Allen, S. J., Wheeler, J. G., Blackman, M. J., Bennett, S., Takacs, B., Schonfeld, H. J., Holder, A. A. and Greenwood, B. M. (1992). Naturally acquired cellular and humoral immune responses to the major merozoite surface antigen (PfMSP1) of Plasmodium falciparum are associated with reduced malaria morbidity. Parasite Immunology 14, 321337.CrossRefGoogle Scholar
Rodrigues, M. M., Dutra, A. P. and Yoshida, N. (1991). Cellular immune response of humans to the circumsporozoite protein of Plasmodium vivax. Memorias do Instituto Oswaldo Cruz 86, 153158.CrossRefGoogle Scholar
Rodrigues, M. H., Cunha, M. G., Machado, R. L., Ferreira, O. C. Jr., Rodrigues, M. M. and Soares, I. S. (2003). Serological detection of Plasmodium vivax malaria using recombinant proteins corresponding to the 19-kDa C-terminal region of the merozoite surface protein-1. Malaria Journal 2, 39.CrossRefGoogle Scholar
Rodrigues, M. H., Rodrigues, K. M., Oliveira, T. R., Comodo, A. N., Rodrigues, M. M., Kocken, C. H., Thomas, A. W. and Soares, I. S. (2005). Antibody response of naturally infected individuals to recombinant Plasmodium vivax apical membrane antigen-1. International Journal of Parasitology 35, 185192.CrossRefGoogle ScholarPubMed
Rodrigues-da-Silva, R. N., Lima-Junior Jda, C., e Fonseca Bde, P., Antas, P. R., Baldez, A., Storer, F. L., Santos, F., Banic, D. M. and de Oliveira-Ferreira, J. (2014). Alterations in cytokines and haematological parameters during the acute and convalescent phases of Plasmodium falciparum and Plasmodium vivax infections. Memorias do Instituto Oswaldo Cruz 109, 154162.CrossRefGoogle ScholarPubMed
Ryan, J. R., Stoute, J. A., Amon, J., Dunton, R. F., Mtalib, R., Koros, J., Owour, B., Luckhart, S., Wirtz, R. A., Barnwell, J. W. and Rosenberg, R. (2006). Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya. American Journal of Tropical Medicines and Hygiene 75, 575581.CrossRefGoogle ScholarPubMed
Sabchareon, A., Burnouf, T., Ouattara, D., Attanath, P., Bouharoun-Tayoun, H., Chantavanich, P., Foucault, C., Chongsuphajaisiddhi, T. and Druilhe, P. (1991). Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. American Journal of Tropical Medicines and Hygiene 45, 297308.CrossRefGoogle ScholarPubMed
Salwati, E., Minigo, G., Woodberry, T., Piera, K. A., de Silva, H. D., Kenangalem, E., Tjitra, E., Coppel, R. L., Price, R. N., Anstey, N. M. and Plebanski, M. (2011). Differential cellular recognition of antigens during acute Plasmodium falciparum and Plasmodium vivax malaria. Journal of Infectious Diseases 203, 11921199.CrossRefGoogle ScholarPubMed
Sattabongkot, J., Maneechai, N., Phunkitchar, V., Eikarat, N., Khuntirat, B., Sirichaisinthop, J., Burge, R. and Coleman, R. E. (2003). Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. American Journal of Tropical Medicines and Hygiene 69, 529535.CrossRefGoogle ScholarPubMed
Schittek, B. and Rajewsky, K. (1990). Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346, 749751.CrossRefGoogle ScholarPubMed
Scholzen, A., Teirlinck, A. C., Bijker, E. M., Roestenberg, M., Hermsen, C. C., Hoffman, S. L. and Sauerwein, R. W. (2014). BAFF and BAFF receptor levels correlate with B cell subset activation and redistribution in controlled human malaria infection. Journal of Immunology 192, 37193729.CrossRefGoogle ScholarPubMed
Seth, R. K., Bhat, A. A., Rao, D. N. and Biswas, S. (2010). Acquired immune response to defined Plasmodium vivax antigens in individuals residing in northern India. Microbes and Infection 12, 199206.CrossRefGoogle ScholarPubMed
Sfikakis, P. P., Boletis, J. N. and Tsokos, G. C. (2005). Rituximab anti-B-cell therapy in systemic lupus erythematosus: pointing to the future. Current Opinion in Rheumatology 17, 550557.CrossRefGoogle ScholarPubMed
Siddiqui, A. A., Bora, H., Singh, N., Dash, A. P. and Sharma, Y. D. (2008). Expression, purification, and characterization of the immunological response to a 40-kilodalton Plasmodium vivax tryptophan-rich antigen. Infection and Immunity 76, 25762586.CrossRefGoogle ScholarPubMed
Silva, A. L., Lacerda, M. V., Fujiwara, R. T., Bueno, L. L. and Braga, E. M. (2013). Plasmodium vivax infection induces expansion of activated naive/memory T cells and differentiation into a central memory profile. Microbes and Infection 15, 837843.CrossRefGoogle ScholarPubMed
Skorokhod, O. A., Alessio, M., Mordmuller, B., Arese, P. and Schwarzer, E. (2004). Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-gamma-mediated effect. Journal of Immunology 173, 40664074.CrossRefGoogle ScholarPubMed
Slifka, M. K., Antia, R., Whitmire, J. K. and Ahmed, R. (1998). Humoral immunity due to long-lived plasma cells. Immunity 8, 363372.CrossRefGoogle ScholarPubMed
Smith, T., Felger, I., Tanner, M. and Beck, H. P. (1999). Premunition in Plasmodium falciparum infection: insights from the epidemiology of multiple infections. Transactions of the Royal Society of Tropical Medicines and Hygiene 93 (Suppl 1), 5964.CrossRefGoogle ScholarPubMed
Soares, I. S., Levitus, G., Souza, J. M., Del Portillo, H. A. and Rodrigues, M. M. (1997). Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria. Infection and Immunity 65, 16061614.CrossRefGoogle Scholar
Soares, I. S., da Cunha, M. G., Silva, M. N., Souza, J. M., Del Portillo, H. A. and Rodrigues, M. M. (1999a). Longevity of naturally acquired antibody responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1. American Journal of Tropical Medicine and Hygiene 60, 357363.CrossRefGoogle Scholar
Soares, I. S., Oliveira, S. G., Souza, J. M. and Rodrigues, M. M. (1999b). Antibody response to the N and C-terminal regions of the Plasmodium vivax Merozoite Surface Protein 1 in individuals living in an area of exclusive transmission of P. vivax malaria in the north of Brazil. Acta Tropica 72, 1324.CrossRefGoogle Scholar
Soares, I. S. and Rodrigues, M. M. (2002). Immunogenic properties of the Plasmodium vivax vaccine candidate MSP1(19) expressed as a secreted non-glycosylated polypeptide from Pichia pastoris. Parasitology 124, 237246.CrossRefGoogle ScholarPubMed
Souza-Silva, F. A., da Silva-Nunes, M., Sanchez, B. A., Ceravolo, I. P., Malafronte, R. S., Brito, C. F., Ferreira, M. U. and Carvalho, L. H. (2010). Naturally acquired antibodies to Plasmodium vivax Duffy binding protein (DBP) in Brazilian Amazon. American Journal of Tropical Medicines and Hygiene 82, 185193.CrossRefGoogle ScholarPubMed
Souza-Silva, F. A., Torres, L. M., Santos-Alves, J. R., Tang, M. L., Sanchez, B. A., Sousa, T. N., Fontes, C. J., Nogueira, P. A., Rocha, R. S., Brito, C. F., Adams, J. H., Kano, F. S. and Carvalho, L. H. (2014). Duffy antigen receptor for chemokine (DARC) polymorphisms and its involvement in acquisition of inhibitory anti-duffy binding protein II (DBPII) immunity. PLoS ONE 9, e93782.CrossRefGoogle ScholarPubMed
Speiser, D. E., Utzschneider, D. T., Oberle, S. G., Munz, C., Romero, P. and Zehn, D. (2014). T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nature Reviews Immunology 14, 768774.CrossRefGoogle ScholarPubMed
Stanisic, D. I., Javati, S., Kiniboro, B., Lin, E., Jiang, J., Singh, B., Meyer, E. V., Siba, P., Koepfli, C., Felger, I., Galinski, M. R. and Mueller, I. (2013). Naturally acquired immune responses to P. vivax merozoite surface protein 3alpha and merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in young Papua New Guinean children. PLoS Neglected Tropical Diseases 7, e2498.CrossRefGoogle Scholar
Stanisic, D. I., Fowkes, F. J., Koinari, M., Javati, S., Lin, E., Kiniboro, B., Richards, J. S., Robinson, L. J., Schofield, L., Kazura, J. W., King, C. L., Zimmerman, P., Felger, I., Siba, P. M., Mueller, I. and Beeson, J. G. (2015). Acquisition of antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and the influence of age, force of infection, and magnitude of response. Infection and Immunity 83, 646660.CrossRefGoogle ScholarPubMed
Storti-Melo, L. M., Souza-Neiras, W. C., Cassiano, G. C., Taveira, L. C., Cordeiro, A. J., Couto, V. S., Povoa, M. M., Cunha, M. G., Echeverry, D. M., Rossit, A. R., Arevalo-Herrera, M., Herrera, S. and Machado, R. L. (2011). Evaluation of the naturally acquired antibody immune response to the Pv200L N-terminal fragment of Plasmodium vivax merozoite surface protein-1 in four areas of the Amazon Region of Brazil. American Journal of Tropical Medicines and Hygiene 84, 5863.CrossRefGoogle Scholar
Suh, I. B., Choi, H. K., Lee, S. W., Woo, S. K., Kang, H. Y., Won, Y. D., Cho, M. and Lim, C. S. (2003). Reactivity of sera from cases of Plasmodium vivax malaria towards three recombinant antigens based on the surface proteins of the parasite. Annals of Tropical Medicine and Parasitology 97, 481487.CrossRefGoogle ScholarPubMed
Suphavilai, C., Looareesuwan, S. and Good, M. F. (2004). Analysis of circumsporozoite protein-specific immune responses following recent infection with Plasmodium vivax. American Journal of Tropical Medicines and Hygiene 71, 2939.CrossRefGoogle ScholarPubMed
Taliaferro, W. H. (1949). Immunity to the Malaria infections. In Malariology (ed. Boyd, M. F.), pp. 935965. W.B. Saunders, Philadelphia.Google Scholar
Tew, J. G., Phipps, R. P. and Mandel, T. E. (1980). The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunology Reviews 53, 175201.Google ScholarPubMed
Torre, D., Ferrario, G., Matteelli, A., Speranza, F., Giola, M., Pugliese, A., Cantamessa, C., Carosi, G. and Fiori, G. P. (1998). Levels of circulating nitrate/nitrite and gamma interferon not increased in uncomplicated malaria. Infection 26, 301303.CrossRefGoogle Scholar
Tran, T. M., Oliveira-Ferreira, J., Moreno, A., Santos, F., Yazdani, S. S., Chitnis, C. E., Altman, J. D., Meyer, E. V., Barnwell, J. W. and Galinski, M. R. (2005). Comparison of IgG reactivities to Plasmodium vivax merozoite invasion antigens in a Brazilian Amazon population. American Journal of Tropical Medicines and Hygiene 73, 244255.CrossRefGoogle Scholar
Tsai, L. M. and Yu, D. (2014). Follicular helper T-cell memory: establishing new frontiers during antibody response. Immunology and Cell Biology 92, 5763.CrossRefGoogle ScholarPubMed
Tsuboi, T., Kappe, S. H., al-Yaman, F., Prickett, M. D., Alpers, M. and Adams, J. H. (1994). Natural variation within the principal adhesion domain of the Plasmodium vivax duffy binding protein. Infection and Immunity 62, 55815586.CrossRefGoogle ScholarPubMed
Tsuboi, T., Takeo, S., Iriko, H., Jin, L., Tsuchimochi, M., Matsuda, S., Han, E. T., Otsuki, H., Kaneko, O., Sattabongkot, J., Udomsangpetch, R., Sawasaki, T., Torii, M. and Endo, Y. (2008). Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infection and Immunity 76, 17021708.CrossRefGoogle ScholarPubMed
Urban, B. C., Ferguson, D. J., Pain, A., Willcox, N., Plebanski, M., Austyn, J. M. and Roberts, D. J. (1999). Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 7377.CrossRefGoogle ScholarPubMed
Urban, B. C., Mwangi, T., Ross, A., Kinyanjui, S., Mosobo, M., Kai, O., Lowe, B., Marsh, K. and Roberts, D. J. (2001). Peripheral blood dendritic cells in children with acute Plasmodium falciparum malaria. Blood 98, 28592861.CrossRefGoogle ScholarPubMed
Urban, B. C., Cordery, D., Shafi, M. J., Bull, P. C., Newbold, C. I., Williams, T. N. and Marsh, K. (2006). The frequency of BDCA3-positive dendritic cells is increased in the peripheral circulation of Kenyan children with severe malaria. Infection and Immunity 74, 67006706.CrossRefGoogle ScholarPubMed
Valderrama-Aguirre, A., Quintero, G., Gomez, A., Castellanos, A., Perez, Y., Mendez, F., Arevalo-Herrera, M. and Herrera, S. (2005). Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. American Journal of Tropical Medicines and Hygiene 73, 1624.CrossRefGoogle ScholarPubMed
Valizadeh, V., Zakeri, S., Mehrizi, A. A. and Djadid, N. D. (2014). Non-allele specific antibody responses to genetically distinct variant forms of Plasmodium vivax Duffy binding protein (PvDBP-II) in Iranians exposed to seasonal malaria transmission. Acta Tropica 136, 89100.CrossRefGoogle ScholarPubMed
Versiani, F. G., Almeida, M. E., Melo, G. C., Versiani, F. O., Orlandi, P. P., Mariuba, L. A., Soares, L. A., Souza, L. P., da Silva Balieiro, A. A., Monteiro, W. M., Costa, F. T., del Portillo, H. A., Lacerda, M. V. and Nogueira, P. A. (2013). High levels of IgG3 anti ICB2-5 in Plasmodium vivax -infected individuals who did not develop symptoms. Malaria Journal 12, 294.CrossRefGoogle Scholar
Weiss, G. E., Crompton, P. D., Li, S., Walsh, L. A., Moir, S., Traore, B., Kayentao, K., Ongoiba, A., Doumbo, O. K. and Pierce, S. K. (2009). Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. Journal of Immunology 183, 21762182.CrossRefGoogle Scholar
Weiss, G. E., Clark, E. H., Li, S., Traore, B., Kayentao, K., Ongoiba, A., Hernandez, J. N., Doumbo, O. K., Pierce, S. K., Branch, O. H. and Crompton, P. D. (2011). A positive correlation between atypical memory B cells and Plasmodium falciparum transmission intensity in cross-sectional studies in Peru and Mali. PLoS ONE 6, e15983.CrossRefGoogle ScholarPubMed
Weiss, W. R., Mellouk, S., Houghten, R. A., Sedegah, M., Kumar, S., Good, M. F., Berzofsky, J. A., Miller, L. H. and Hoffman, S. L. (1990). Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. Journal of Experimental Medicine 171, 763773.CrossRefGoogle ScholarPubMed
Westenberger, S. J., McClean, C. M., Chattopadhyay, R., Dharia, N. V., Carlton, J. M., Barnwell, J. W., Collins, W. E., Hoffman, S. L., Zhou, Y., Vinetz, J. M. and Winzeler, E. A. (2010). A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito. PLoS Neglected Tropical Diseases 4, e653.CrossRefGoogle ScholarPubMed
Wickramarachchi, T., Premaratne, P. H., Perera, K. L., Bandara, S., Kocken, C. H., Thomas, A. W., Handunnetti, S. M. and Udagama-Randeniya, P. V. (2006). Natural human antibody responses to Plasmodium vivax apical membrane antigen 1 under low transmission and unstable malaria conditions in Sri Lanka. Infection and Immunity 74, 798801.CrossRefGoogle ScholarPubMed
Wickramarachchi, T., Illeperuma, R. J., Perera, L., Bandara, S., Holm, I., Longacre, S., Handunnetti, S. M. and Udagama-Randeniya, P. V. (2007). Comparison of naturally acquired antibody responses against the C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 under low transmission and unstable malaria conditions in Sri Lanka. International Journal of Parasitology 37, 199208.CrossRefGoogle ScholarPubMed
Wipasa, J., Suphavilai, C., Okell, L. C., Cook, J., Corran, P. H., Thaikla, K., Liewsaree, W., Riley, E. M. and Hafalla, J. C. (2010). Long-lived antibody and B Cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathogens 6, e1000770.CrossRefGoogle Scholar
Wipasa, J., Okell, L., Sakkhachornphop, S., Suphavilai, C., Chawansuntati, K., Liewsaree, W., Hafalla, J. C. and Riley, E. M. (2011). Short-lived IFN-gamma effector responses, but long-lived IL-10 memory responses, to malaria in an area of low malaria endemicity. PLoS Pathogens 7, e1001281.CrossRefGoogle Scholar
Woldearegai, T. G., Kremsner, P. G., Kun, J. F. and Mordmuller, B. (2013). Plasmodium vivax malaria in Duffy-negative individuals from Ethiopia. Transactions of the Royal Society of Tropical Medicines and Hygiene 107, 328331.CrossRefGoogle ScholarPubMed
Woodberry, T., Minigo, G., Piera, K. A., Hanley, J. C., de Silva, H. D., Salwati, E., Kenangalem, E., Tjitra, E., Coppel, R. L., Price, R. N., Anstey, N. M. and Plebanski, M. (2008). Antibodies to Plasmodium falciparum and Plasmodium vivax merozoite surface protein 5 in Indonesia: species-specific and cross-reactive responses. Journal of Infectious Diseases 198, 134142.CrossRefGoogle ScholarPubMed
Xainli, J., Baisor, M., Kastens, W., Bockarie, M., Adams, J. H. and King, C. L. (2002). Age-dependent cellular immune responses to Plasmodium vivax Duffy binding protein in humans. Journal of Immunology 169, 32003207.CrossRefGoogle ScholarPubMed
Xainli, J., Cole-Tobian, J. L., Baisor, M., Kastens, W., Bockarie, M., Yazdani, S. S., Chitnis, C. E., Adams, J. H. and King, C. L. (2003). Epitope-specific humoral immunity to Plasmodium vivax Duffy binding protein. Infection and Immunity 71, 25082515.CrossRefGoogle ScholarPubMed
Yeo, T. W., Lampah, D. A., Tjitra, E., Piera, K., Gitawati, R., Kenangalem, E., Price, R. N. and Anstey, N. M. (2010). Greater endothelial activation, Weibel-Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. Journal of Infectious Diseases 202, 109112.CrossRefGoogle ScholarPubMed
Zakeri, S., Babaeekhou, L., Mehrizi, A. A., Abbasi, M. and Djadid, N. D. (2011). Antibody responses and avidity of naturally acquired anti- Plasmodium vivax Duffy binding protein (PvDBP) antibodies in individuals from an area with unstable malaria transmission. American Journal of Tropical Medicines and Hygiene 84, 944950.CrossRefGoogle ScholarPubMed
Zeeshan, M., Bora, H. and Sharma, Y. D. (2013). Presence of memory T cells and naturally acquired antibodies in Plasmodium vivax malaria-exposed individuals against a group of tryptophan-rich antigens with conserved sequences. Journal of Infectious Diseases 207, 175185.CrossRefGoogle ScholarPubMed
Zeeshan, M., Tyagi, K. and Sharma, Y. D. (2015). CD4+ T cell response correlates with naturally acquired antibodies against Plasmodium vivax tryptophan-rich antigens. Infection and Immunity 83, 20182029.CrossRefGoogle ScholarPubMed
Zevering, Y., Khamboonruang, C., Rungruengthanakit, K., Tungviboonchai, L., Ruengpipattanapan, J., Bathurst, I., Barr, P. and Good, M. F. (1994). Life-spans of human T-cell responses to determinants from the circumsporozoite proteins of Plasmodium falciparum and Plasmodium vivax. Proceedings of the National Academy of Sciences U S A 91, 61186122.CrossRefGoogle ScholarPubMed
Zeyrek, F. Y., Kurcer, M. A., Zeyrek, D. and Simsek, Z. (2006). Parasite density and serum cytokine levels in Plasmodium vivax malaria in Turkey. Parasite Immunology 28, 201207.CrossRefGoogle ScholarPubMed
Zeyrek, F. Y., Babaoglu, A., Demirel, S., Erdogan, D. D., Ak, M., Korkmaz, M. and Coban, C. (2008). Analysis of naturally acquired antibody responses to the 19-kd C-terminal region of merozoite surface protein-1 of Plasmodium vivax from individuals in Sanliurfa, Turkey. American Journal of Tropical Medicines and Hygiene 78, 729732.CrossRefGoogle Scholar
Zinkernagel, R. M. (2002). On differences between immunity and immunological memory. Current Opinion in Immunology 14, 523536.CrossRefGoogle ScholarPubMed