Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T00:43:16.225Z Has data issue: false hasContentIssue false

The effect of the dopamine agonist, apomorphine, on regional cerebral blood flow in normal volunteers

Published online by Cambridge University Press:  09 July 2009

P. M. Grasby*
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
K. J. Friston
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
C. J. Bench
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
P. J. Cowen
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
C. D. Frith
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
P. F. Liddle
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
R. S. J. Frackowiak
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
R. J. Dolan
Affiliation:
MRC Cyclotron Unit, Hammersmith Hospital; Academic Department of Psychiatry, Royal Free Hospital and School of Medicine; National Hospital for Neurology and Neurosurgery; Department of Psychology, University College, London; and MRC Clinical Pharmacology Unit, Littlemore Hospital, Oxford
*
1Address for correspondence: Dr P. M. Grasby, MRC Cyclotron Unit, Hammersmith Hospital, Du Cane Road, London W12 OHS.

Synopsis

Apomorphine, a non-selective dopamine agonist, has been used as a pharmacological probe for investigating central dopaminergic neurotransmission in psychiatric illness. In this study repeated measurements of regional cerebral blood flow (rCBF) were made in normal volunteers before, and after, the administration of apomorphine (5 or 10 μg/kg), or placebo. The difference in rCBF, before and after drug (apomorphine versus placebo), was used to identify brain areas affected by apomorphine. Compared to placebo, both doses of apomorphine increased blood flow in the anterior cingulate cortex. Apomorphine 10 μg/kg also increased prefrontal rCBF (right > left). No decreases in rCBF were noted following either dose of apomorphine. Apomorphine-induced increases of anterior cingulate blood flow might serve as an in vivo index of central dopamine function. Such an approach would complement established neuroendocrine challenge paradigms for investigating central dopamine neurotransmission in psychiatric illness.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghajanian, G. K. & Bunnet, B. S. (1977). Dopamine ‘auto-receptors’. Pharmacological characterization by micro iontophoretic single cell recording studies. Naunyn-Schmiedeberg's Archives of Pharmacology 297, 17.CrossRefGoogle Scholar
Anden, N., Rubensen, A., Fuxe, K. & Hokfelt, T. (1967). Evidence for dopamine stimulation by apomorphine. Journal of Pharmacy and Pharmacology 19, 627628.CrossRefGoogle ScholarPubMed
Berger, B., Gaspar, P. & Verney, C. (1991). Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends in the Neurosciences 14, 2126.CrossRefGoogle ScholarPubMed
Bes, A., Guell, A., Fabre, N., Arne-Bes, M. C. & Geraud, G. (1983). Effects of dopaminergic agonists (piribedil and bromocriptine) on cerebral blood flow in Parkinsonism. Journal of Cerebral Blood Flow and Metabolism 3, suppl S490S491.Google Scholar
Camps, M., Cortes, R., Gueye, B., Probst, A. & Palacious, J. M. (1989). Dopamine receptors in human brain: autoradiographic distribution of D2 sites. Neuroscience 28, 275290.CrossRefGoogle ScholarPubMed
Checkley, S. A. (1980) Neuroendocrine tests of monoamine function in man: a review of basic theory and its application to the study of depressive illness. Psychological Medicine 10, 3553.CrossRefGoogle Scholar
Cleghorn, J. M., Szechtman, H., Garnett, E. S., Nahmias, C., Brown, G. M., Kaplan, R. D., Szechtman, B. & Franco, S. (1991) Apomorphine effects on brain metabolism in neuroleptic-naive schizophrenic patients. Psychiatry Research Neuroimaging 40, 135153.CrossRefGoogle Scholar
Corsini, G. U., Piccardi, M. P., Bocchetta, F., Bernardi, F. & Del Zompo, M. (1981). Behavioural effects of apomorphine in man: dopamine receptor implications. In Apomorphine and Other Dopaminomimetics, Vol. 2: Clinical Pharmacology (ed. Corsini, G. U. and Gessa, G. L.), pp. 1324, Raven Press: New York.Google Scholar
Cortes, R., Gueye, B., Pazos, A., Probst, A. & Palacious, J. M. (1989). Dopamine receptors in human brain: autoradiographic distribution of D1 sites. Neuroscience 28, 263273.CrossRefGoogle ScholarPubMed
Costain, D. W., Cowen, P. J., Gelder, M. G. & Grahame-Smith, D. G. (1982). Electroconvulsive therapy and the brain: evidence for increased dopamine mediated responses. Lancet ii, 400404.CrossRefGoogle Scholar
Cowen, P. J., Gadhui, H., Gosden, B. & Kolakowska, T. (1985). Responses of prolactin and growth hormone to L-tryptophan infusion: effects in normal subjects and schizophrenic patients receiving neuroleptics. Psychopharmacology 86, 164169.CrossRefGoogle ScholarPubMed
Creese, I. (1987). Biochemical properties of CNS dopamine receptors. In Psychopharmacology: The Third Generation of Progress (ed. Meltzer, H. Y.), pp. 258260. Raven Press: New York.Google Scholar
Daniel, D. G., Berman, K. F. & Weinberger, D. R. (1991). The effect of apomorphine on regional cerebral blood flow in schizophrenia. Journal of Neuropsychiatry 1, 377384.Google Scholar
De Keyser, J., Herregodts, P. & Ebinger, G. (1990). The mesoneocortical dopamine neuron system. Neurology 40, 16601662.CrossRefGoogle ScholarPubMed
Duara, R., Gross-Glen, K., Barker, W. W., Chang, J. Y., Apicella, A., Lowenstein, D. & Boothe, T. (1987). Behavioural activation and the variability of cerebral metabolic measurements. Journal of Cerebral Blood Flow and Metabolism 7, 266271.CrossRefGoogle ScholarPubMed
Edvinsson, L., Harbedo, J.-E., McCulloch, J. & Owman, C. (1978). Effects of dopaminergic agonists and antagonists on isolated cerebral blood vessels. Acta Physiologica Scandinavica 105, 349359.CrossRefGoogle Scholar
Edvinsson, L., McCulloch, J. & Sharkey, J. (1985). Vasomotor responses of cerebral arterioles in situ to putative dopamine receptor agonists. British Journal of Pharmacology 85, 403410.CrossRefGoogle ScholarPubMed
Fox, P. T. & Mintun, M. A. (1989). Non-invasive functional brain mapping by change distribution analysis of averaged PET images of H215O tissue activity. Journal of Nuclear Medicine 30, 141149.Google Scholar
Friston, K. J., Passingham, R. E., Nutt, J. G., Heather, J. D., Sawle, G. V. & Frackowiak, R. S. J. (1989). Localization in PET images: direct fitting of the intercommissural (AC–PC) line. Journal of Cerebral Blood Flow and Metabolism 9, 690695.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Liddle, P. F., Lammertsma, A. A., Dolan, R. J. & Frackowiak, R. S. J. (1990). The relationship between local and global changes in PET scans. Journal of Cerebral Blood Flow and Metabolism 10, 458466.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. (1991 a). Plastic transformation of PET images. Journal of Computer Assisted Tomography 15, 634639.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. (1991 b). Comparing functional (PET) images: the assessment of significant change. Journal of Cerebral Blood Flow and Metabolism 11, 690699.CrossRefGoogle ScholarPubMed
Friston, K. J., Grasby, P. M., Bench, C., Frith, C. D., Cowen, P. J., Liddle, P. F., Frackowiak, R. S. J. & Dolan, R. J. (1992). Measuring the neuromodulatory effects of drugs in man with positron emission tomography. Neuroscience Letters 141, 106110.CrossRefGoogle ScholarPubMed
Gancher, S., Woodward, W., Boucher, B. & Nutt, J. (1989). Peripheral pharmacokinetics of apomorphine in humans. Annals of Neurology 26, 232238.CrossRefGoogle ScholarPubMed
Guell, A., Geraud, G., Jauzac, Ph., Victor, G. & Arne-Bes, M. C. (1982). Effects of a dopaminergic agonist (piribedil) on cerebral blood flow in man. Journal of Cerebral Blood Flow and Metabolism 2, 255257.CrossRefGoogle ScholarPubMed
Hand, D. J. & Taylor, C. C. (1991). Multivariate Analysis of Variance and Repeated measures pp. 944. Chapman and Hall: London.Google Scholar
Lal, S. (1987). Growth hormone response and schizophrenia. In Psychopharmacology: The Third Generation of Progress (ed. Meltzer, H. Y.), pp. 809818. Raven Press: New York.Google Scholar
Lammertsma, A. A., Cunningham, V. J., Deiber, M. P., Heather, J. D., Bloomfield, P. M., Nutt, J. G., Frackowiak, R. S. J. & Jones, T. (1990). Combination of dynamic and integral methods for generating reproducible function CBF images. Journal of Cerebral Blood Flow and Metabolism 10, 675686.CrossRefGoogle ScholarPubMed
Leendeers, K. L., Wolfson, L., Gibbs, J. M., Wise, R. J. S., Causon, R., Jones, T. & Legg, N. J. (1985). The effects of L-dopa on regional cerebral blood flow and oxygen metabolism in patients with Parkinson's disease. Brain 108, 171191.CrossRefGoogle Scholar
Mackay, C., Cox, T., Burrows, G. & Lazzerini, T. (1978). An inventory for the measurement of self-reported stress and arousal. British Journal of Social and Clinical Psychology 17, 283284.CrossRefGoogle ScholarPubMed
McCulloch, J. (1982). Mapping functional alterations in the CNS with [14C]-deoxyglucose. In Handbook of Psychopharmacology (ed. Iversen, L. I., Iverson, S. D. and Snyder, S. H.), pp. 321410. Plenum: New York.CrossRefGoogle Scholar
McCulloch, J. & Murray-Harper, A. (1977). Cerebral circulation: effect of stimulation and blockade of dopamine receptors. American Journal of Physiology 233, H222H227.Google ScholarPubMed
McCulloch, J., Kelly, P. A. T. & Ford, I. (1982). Effect of apomorphine on the relationship between local cerebral glucose utilization and local blood flow (with an appendix on its statistical analysis). Journal of Cerebral Blood Flow and Metabolism 2, 487499.CrossRefGoogle ScholarPubMed
Meltzer, H. Y., Kolakowska, T., Fang, V. S., Fogg, L., Robertson, A., Lewine, R., Strahilevitz, M. & Busch, D. (1984). Growth hormone and prolactin response to apomorphine in schizophrenia and the major affective disorders. Archives of General Psychiatry 41, 512520.CrossRefGoogle ScholarPubMed
Posner, M. I., Petersen, S. E., Fox, P. T. & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science 240, 16271631.CrossRefGoogle ScholarPubMed
Quinlan, P. T. (1992). The Oxford Psycholinguistic Database. Oxford University Press: Oxford.Google Scholar
Raichle, M. E. (1987). Circulatory and metabolic correlations of brain function in normal humans. In Handbook of Physiology. Section 1: The Nervous System. Vol. 5: Higher Functions of the Brain (ed. Plum, F.), pp. 643674. Oxford University Press; New York.Google Scholar
Sabatini, U., Rascol, O., Celsis, P., Houin, G., Rascol, A. & Marc-Vergnes, J. P. (1991). Subcutaneous apomorphine increases regional cerebral blood flow in parkinsonian patients via peripheral mechanisms. British Journal of Clinical Pharmacology 32, 229234.CrossRefGoogle ScholarPubMed
Soncrant, T. T., Pizzolato, G. & Battistin, L. (1986). The use of drugs as probes of cerebral function In PET and NMR: New Perspectives in Neuroimaging and in Clinical Neurochemistry (ed. Battistin, L. and Gerstenbrand, F.), pp. 131149. Alan R. Liss: New York.Google Scholar
Spinks, T. J., Jones, T., Gilardi, M. C. & Heather, J. D. (1988). Physical performance of the latest generation of commercial positron scanner. IEEE Transactions on Nuclear Science 35, 721725.CrossRefGoogle Scholar
Talairach, J. & Tournoux, P. (1988). A Co-Planar Stereotactic Atlas of the Human Brain. Thieme Verlag: Stuttgart.Google Scholar
Toda, N. (1976). Influence of dopamine and noradrenaline on isolated cerebral arteries of the dog. British Journal of Pharmacology 58, 121126.CrossRefGoogle ScholarPubMed
Wieck, A., Kumar, R., Hirst, A. D., Campbell, I. C. & Checkley, S. A. (1991). Increased sensitivity of dopamine receptors and recurrence of affective psychosis after childbirth. British Medical Journal 303, 613616.CrossRefGoogle ScholarPubMed
Wildt, A. R. & Ahtola, O. T. (1978). Analysis of Covariance. (University papers: quantitative applications in the social sciences Ser. no. 12) Sage Publications: Beverly Hills, CA.CrossRefGoogle Scholar