Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-06T19:51:07.645Z Has data issue: false hasContentIssue false

Molecular electrostatic potential of the nucleic acids

Published online by Cambridge University Press:  17 March 2009

Alberte Pullman
Affiliation:
Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique associé au C.N.R.S., 13, rue P. et M. Curie – 75005 Paris
Bernard Pullman
Affiliation:
Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique associé au C.N.R.S., 13, rue P. et M. Curie – 75005 Paris

Extract

It is generally acknowledged that geometrical and conformational properties of biopolymers have an important effect on their biochemical behaviour. It is less easily recognized that these properties depend also on their macromolecular electronic characteristics.

The aim of this review is to demonstrate the significance of such macromolecular electronic effects. Particularly useful for this sake is the recently much developed concept of ‘molecular electrostatic potential’ (MEP) (Scrocco & Tomasi, 1973, 1978) by which is defined the electrostatic (Coulomb) potential created in the neighbouring space by the nuclear charges and the eletronic distribution of a molecule.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alden, C. J. & Kim, S.-H. (1979). Accessible surface areas of nucleic acids and their relation to folding, conformational transition and protein recognition. In Stereodynamics of Molecular Systems (ed. Sarma, R. H.), pp. 331350. New York: Pergamon.CrossRefGoogle Scholar
Anderson, C. F., Record, J. M. T. & Hart, P. A. (1978). Sodium-23 NMR studies of cation-DNA interactions. Biophys. Chem. 7, 301316.CrossRefGoogle ScholarPubMed
Arnott, S. & Hukins, D. W. L. (1972). Optimised parameters for A-DNA and B-DNA. Biochem. biophys. Res. Commun. 47, 15041509.CrossRefGoogle ScholarPubMed
Arnott, S., Chandrasekaran, R., Birdsall, D. C., Leslie, A. G. W. & Ratliff, R. L. (1980). Left-handed DNA helices. Nature, Lond. 283, 743745.CrossRefGoogle ScholarPubMed
Berthod, H. & Pullman, A. (1975). The molecular electrostatic potential of the dimethyiphosphate anion: an ab initio study. Chem. Phys. Lett. 32, 233235.CrossRefGoogle Scholar
Berthod, H. & Pullman, A. (1977). Interactions in a phosphate-water-cation system. Chem. Phys. Lett. 46, 249252.CrossRefGoogle Scholar
Berthod, H. & Pullman, A. (1978). Quantum-mechanical exploration of the properties of the sugar rings. I. Electrostatic molecular potential, hydration and cation binding scheme of C3′-endo-gg-ribose. Theor. Chim. Acta, 47, 5966.CrossRefGoogle Scholar
Bleam, M. L., Anderson, C. F. & Record, M. T. Jr (1980). Relative binding affinities of monovalent cations for double stranded DNA. Proc. natn. Acad. Sci. U.S.A. 77, 30853089.CrossRefGoogle ScholarPubMed
Bonaccorsi, R., Pullman, A., Scrocco, E. & Tomasi, J. (1972). The molecular electrostatic potentials for the nucleic acid bases: adenine, thymine and cytosine. Theor. Chim. Acta 24, 5160.CrossRefGoogle Scholar
Bonaccorsi, R., Scrocco, E., Tomasi, J. & Pullman, A. (1975). Ab initio molecular electrostatic potentials: guanine compared to adenine. Theor. Chim. Acta 36, 339344.CrossRefGoogle Scholar
Cauchy, D., Lavery, R. & Pullman, B. (1980). The effect of screening the electrostatic potentials of reactive sites within B-DNA by metal cations. Theor. chim. Acta 57, 323327.CrossRefGoogle Scholar
Christensen, J. J., Rytting, J. H. & Izatt, R. M. (1970). Thermodynamic pK, ΔH°, ΔS° and ΔCD° values for proton dissociation from several purines and their nucleosides in aqueous solution. Biochemistry, N.Y. 9, 49074913.CrossRefGoogle Scholar
Church, G. M., Sussman, J. L. & Kim, S.-H. (1977). Secondary structural complementarity between DNA and proteins. Proc. natn. Acad. Sci. U.S.A. 74, 14581462.CrossRefGoogle ScholarPubMed
Craddock, V. M. (1969). The reaction of N-methyl-N′-nitro-N-nitro-soguanidine with DNA in the intact animal. Chem. Biol. Inter. 1, 234237.CrossRefGoogle Scholar
Cramer, F. & Seidel, H. (1964). The selective 1-N-oxidation of nucleobases in homopolynucleotides and in nucleic acids. Biochim. biophys. Acta 91, 1422.Google ScholarPubMed
Deering, R. A., Taylor, W. D. & Burns, L. R. (1975). Near-ultraviolet light-induced strand breaks in DNA pretreated with the carcinogen N-acetoxy-2-acetylaminofluorene. Biophys. J. 15, 181187.CrossRefGoogle ScholarPubMed
De Santis, P.Formi, E. & Rizzo, R. (1974). Conformational analysis of DNA-basic polypeptide complexes: possible models of nucleoprotamines and nucleohistones. Biopolymers 13, 313326CrossRefGoogle ScholarPubMed
Dipple, A., Brookes, P., Macintosh, D. S. & Rayman, M. P. (1971). Reaction of 7-bromomethylbenz[a]anthracene with nucleic acids, polynucleotides and nucleosides. Biochemistry, N.Y. 10, 43234330CrossRefGoogle Scholar
Drew, H. R., Takano, T., Tanak, S., Itakura, K. & Dickerson, R. E. (1980). High-salt d(CDGDCDG): left-handed Z-DNA double helix. Nature, Lond. 286, 567573.CrossRefGoogle ScholarPubMed
Dreyfus, M. & Pullman, A. (1970). A non empirical study of the hydrogen bond between peptide units. Theor. chim. Acta 19, 2037.CrossRefGoogle Scholar
Drinkwater, N. R., Miller, J. A., Miller, E. C. & Yang, N. C. (1978). Covalent intercalative binding to DNA in relation to the mutagenicity of hydrocarbon epoxides and N-acetoxy-2-acetylaminofluorene. Cancer Res. 38, 32463255.Google Scholar
Fujimura, S., Grunberger, D., Carvajal, G. & Weinstein, I. B. (1972). Modification of ribonucleic acids by chemical carcinogens. Modification of Escherichia coli formylmethionine transfer ribonucleic acid with N-acetoxy-2-acetylaminofluorene Biochemistry, N.Y. 11, 36293635.CrossRefGoogle ScholarPubMed
Geacintov, N. E., Gagliano, A., Ivanovic, V. & Weinstein, I. B. (1978). Electric-linear dichroism study on the orientation of benzo[a]pyrene-7, 8-dihydrodiol.9,10-oxide covalently bound to DNA. Biochemistry, N.Y. 17, 52565262.CrossRefGoogle Scholar
Goldblum, A., Perahia, D. & Pullman, A. (1979). Use of the overlap multi-pole expansion for approximating molecular electrostatic potentials. Int. J. Quantum Chem. 15, 121129.CrossRefGoogle Scholar
Goldblum, A. & Pullman, B. (1978). Study of anion binding to protonated nucleic acid bases using electrostatic molecular potentials. Theor. chim. Acta 47, 345347.CrossRefGoogle Scholar
Grunberger, D. & Weinstein, I. B. (1979). Biochemical effects of the modification of nucleic acids by certain polycyclic aromatic carcinogens. Prog. nucleic Acid Res. molec. Biol. 23, 105149.CrossRefGoogle ScholarPubMed
Holbrook, S. R., Sussman, J. L., Warrant, R. W.Church, G. M. & Kim, S.-H. (1977). RNA-ligand interactions. I. Magnesium binding sites in yeast tRNAPhe. Nucl. Acids Res. 4, 28112820.CrossRefGoogle Scholar
Jack, A., Ladner, J. E & Klug, A. (1976). Crystallographic refinement of yeast phenylalanine transfer RNA at 2·5 Å resolution. J. molec. Biol. 108, 619649.CrossRefGoogle Scholar
Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S. & Klug, A. (1972). A crystallographic study of metal binding to yeast phenylalanine transfer RNA. J. molec Biol. 111, 315328.CrossRefGoogle Scholar
Jeffrey, A. M., Jennette, K. W., Blobstein, S. H., Weinstein, I. B., Beland, E. A., Harvey, R. G., Kasai, H., Miura, I. & Nakanishi, K. (1976). Benzo[a]pyrene-nucleic acid derivative found in vivo: structure of benzo[a]pyrene tetrahydrodiol epoxide-guanosine adduct. J. Am. chem. Soc. 97, 57145715.CrossRefGoogle Scholar
Jennette, K. W., Jeffrey, A. M., Blobstein, S. H.Beland, F. A., Harvey, R. G. & Weinstein, I. B. (1977). Nucleoside adducts from the in vitro reaction of benzo[a]pyrene-7,8-dihydrodiol-9,10 oxide or benzo[a]pyrene 4,5 oxide with nucleic acids. Biochemistry, N.Y. 16, 932938.CrossRefGoogle Scholar
Jensen, D. E. (1978). Reaction of DNA with alkylating agents. Differential alkylation of poly (dA-dT) by methylnitrosourea and ethylnitrosourea. Biochemistry, N.Y. 17, 51085113.CrossRefGoogle ScholarPubMed
Jensen, D. E. & Reed, D. J. (1978). Reaction of DNA with alkylating agents. Quantitation of alkylation by ethylnitrosourea of oxygen and nitrogen sites on poly (dA-dT) including phosphotriester formation. Biochemistry, N.Y. 17, 50985107.CrossRefGoogle ScholarPubMed
Kadlubar, F. F., Miller, J. A. & Miller, E. C. (1978). Guanyl O6-alkylation of DNA by the carcinogen N-hydroxy-1-naphtylamine. Cancer Res. 38, 36283638.Google Scholar
Kallenbach, N. R., Mandal, C. & Englander, S. W. (1979). Structure fluctuations and interactions in the double helix. In Stereodynamics of Molecular Systems (ed. Sarma, R. H.) pp. 271282. New York: Pergamon.CrossRefGoogle Scholar
Kleinwächter, V. (1979). Interactionof platinum (II) coordination complexes with deoxyribonucleic acid (a mini review) Stud Biophys, Berlin, 73, 117.Google Scholar
Kochetkov, N. K. & Budovskii, E. I. (1972). Organic Chemistry of Nucleic Acids. London: Plenum.Google Scholar
Kolchinsky, A. M., Mirzabekov, A. D., Bilbert, W. & Li, L. (1976). Preferential protection of the minor groove of non-operator DNA by lac repressor against methylation by dimethylsulphate. Nucl. Acids Res. 3, 1118.CrossRefGoogle Scholar
Kwiatkowski, J. S. & Pullman, B. (1979). Ab initio study of a purine nucleoside adenosine. Int. J. Quantum Chem. 15, 499510.CrossRefGoogle Scholar
Lavery, R., Cauchy, D., Rojas, O. & Pullman, A. (1980 a). The molecular electrostatic potential of the B-DNA helix. VII. The effect of screening by monovalent cations. Int. J. Quantum. Biol. Symp. 7, 323330.Google Scholar
Lavery, R., de, Oliveira M. & Pullman, B. (1980 b). The electrostatic potential of yeast tRNAPhe. II. The potentials of the phosphate groups in their various conformational states, J. Comput. Chem. 1, 301306.CrossRefGoogle Scholar
Lavery, R. & Pullman, B. (1979). The molecular electrostatic potential of the B-DNA helix. IV. C8 and amino sites of purines and the binding of carcinogenic acetylaminofluorene to DNA. Theor. chim. Acta 53, 175181.CrossRefGoogle Scholar
Lavery, R. & Pullman, B. (1981). The molecular electrostatic potential on the surface envelopes of macromolecules: B-DNA. Int. J. Quantum Chem. (in the Press).CrossRefGoogle Scholar
Lavery, R., Pullman, A. & Corbin, S. (1981 a). The molecular electrostatic potential on the surface envelopes of macromolecules: tRNAPhe. In Biomolecular Stereodynamics (ed. Sarma, R. H.). (In the Press.)CrossRefGoogle Scholar
Lavery, R., Pullman, A. & Pullman, B. (1980 a). The electrostatic molecular potential of yeast tRNAPhe. III. The molecular potential and steric accessibility associated with the phosphate groups. Theor. chim. Acta 57, 233243.CrossRefGoogle Scholar
Lavery, R., Pullman, A. & Pullman, B. (1980 c). The electrostatic molecular potential of yeast tRNAPhe. I. The potential due to the phosphate backbone. Nucl. Acids Res. 8, 10611078.CrossRefGoogle Scholar
Lavery, R., Pullman, A. & Pullman, B. (1981 b). The steric accessibility of B-DNA to water. Int. J. Quantum Chem. (In the Press.)Google Scholar
Lavery, R., Pullman, A., Pullman, B. & De, Oliveira (1980 b). The electrostatic potential of tRNAPhe IV. The potential and steric accessibilities of sites associated with the bases. Nucl Acids Res. 21, 50955111.CrossRefGoogle Scholar
Lawley, P. D. & Shah, , (1972). Methylation of ribonucleic acid by the carcinogens dimethyl sulphate, N-methyl-N-nitrosourea and N-methyl-N-nitro-N-nitrosoguanidine. Biochem. J. 128, 117132.CrossRefGoogle ScholarPubMed
Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimations of static accessibility. J. molec. Biol. 55, 379400.CrossRefGoogle ScholarPubMed
Lehr, R. E. & Jerina, D. M. (1977). Quantum mechanical calculations predict the relative mutagenicity of benzo[a]anthracene diol epoxides and support the ‘bay region’ concept of aromatic hydrocarbon carcinogenicity. J. Toxicol. & Environ. Health 2, 12591265.CrossRefGoogle Scholar
Lin, J. K., Miller, J. A. & Miller, E. C. (1977). 2,3 Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vitro. Cancer Res. 37, 44304438.Google Scholar
Litt, M. (1969). Inactivation of yeast phenylalanine transfer ribonucleic acid by kethoxal. Biochemistry, N.Y. 8, 32493253.CrossRefGoogle Scholar
Litt, M. & Greenspan, C. M. (1972). Kethoxal inactivation of three transfer ribonucleic acids chargeable by yeast phenylalanine transfer ribonucleic acid synthetase. Biochemistry, N.Y. 11, 14371442.CrossRefGoogle ScholarPubMed
Luck, G., Triebel, H., Waring, M. & Zimmer, Ch. (1974). Conformation dependent binding of netropsin and distamycin to DNA and DNA model polymers. Nucl. Acids Res. 1, 503530.CrossRefGoogle ScholarPubMed
Manning, G. S. (1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys., 11, 179246.CrossRefGoogle Scholar
Massouh-Rizk, (1975). Thesis, University Louis Pasteur of Strasbourg, France.Google Scholar
Metz, D. H. & Brown, G. L. (1969). The investigation of nucleic acid secondary structure by means of chemical modification with a carboiimide reagent. I. The reaction between N-cyclohexyl-N′-β-(4-methyl- morpholinium) ethylcarbodimide and model nucleotides. Biochemistry, N.Y. 8, 23122328.CrossRefGoogle Scholar
Michelson, M. & Pochon, F. (1972). Effect of carcinogens on DNA. Action of 7-bromomethylbenz[a]anthracene. Biochimie 54, 1724.CrossRefGoogle Scholar
Miller, E. C. (1978). Some current perspectives on chemical carcinogenesis in humans and experimental animals: presidential address. Cancer Res. 38, 14791496.Google ScholarPubMed
Miller, J. A. & Miller, E. C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In Origins of Human Cancer, pp. 605627. Cold Spring Harbour Laboratory.Google Scholar
Mitra, C. K., Sarma, M. H. & Sarma, R. H. (1980). The left-handed DNA double helix in solution. Biochemistry 20, 20362041.CrossRefGoogle Scholar
Morozowa, T. W. & Salganik, R. I. (1964). A study of the effect of hydroxylamine on native and denatured DNA. Biochemistry (URSS) 29, 1317.Google Scholar
Nordden, B. (1978). Structural evidence on DNA carcinogen interactions. N-acetoxy-N-2-acetylaminofluorene binding to DNA. Biophys. Chem. 8, 385391.CrossRefGoogle Scholar
Oliveira de, M., Lavery, R. & Pullman, B. (1981). (In preparation.)Google Scholar
Osborne, M. R., Beland, F. A., Harvey, R. G. & Brookes, P. (1967). The reaction of (±) 7α, 8β-dihydroxy-9α,10α-epoxy-7,8,9,10-tetra- hydrobenzo[a]pyrene with DNA. Int. J. Cancer 18, 362368.CrossRefGoogle Scholar
Pal, B. C. (1962). Studies on alkylation of purines and pyrimidines, Biochemistry, N.Y. 1, 558563.CrossRefGoogle ScholarPubMed
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd. ed.Cornell University Press.Google Scholar
Perahia, D. & Pullman, A. (1978). The molecular electrostatic potentials of the complementary base pairs of DNA. Theor. chim. Acta 48, 263266.CrossRefGoogle Scholar
Perahia, D. & Pullman, A. (1979). The molecular electrostatic potential of the B-DNA helix. II. The region of the adenine-thymine base pair. Theor. chim. Acta. 50, 351354.CrossRefGoogle Scholar
Perahia, D., Pullman, A. & Berthod, H. (1975). Cation-binding to biomolecules. IV. An ab initio study on the interaction of Na+ with the purine and pyrimidine bases of the nucleic acids. Theor. Chim. Acta 43, 207214.CrossRefGoogle Scholar
Perahia, D., Pullman, A. & Pullman, B. (1979 a). The molecular electrostatic potential of the B-DNA helix. III. The potential due to the sugar-phosphate backbone. Theor. chim. Acta 51, 349357.CrossRefGoogle Scholar
Perahia, D., Pullman, A. & Pullman, B. (1979 b). Molecular electrostatic potential of the B-DNA helix. V. Poly(dG. dC) and poly(dA. dT). Int. J. Quantum Chem. Quantum Biol. Symp. 6, 353363.Google Scholar
Pohl, F. M. (1974). Thermodynamics of the helix-coil transition of (dG. dC) oligomers. Eur. J. Biochem. 42, 495504.CrossRefGoogle ScholarPubMed
Pohl, F. M. (1976). Polymorphism of a synthetic DNA in solution. Nature, Lond. 260, 365366.CrossRefGoogle ScholarPubMed
Pohl, F. M. & Jovin, T. M. (1972). Self-induced co-operative conformational change of synthetic DNA: equilibrium and kinetic studies with poly(dG. dC) J. molec. Biol. 67, 375396.CrossRefGoogle Scholar
Poirier, M. C., Yuspa, S. H., Weinstein, I. B. & Blobstein, S. H. (1977). Detection of carcinogen-DNA adducts by radioimmunoassay. Nature, Lond. 270, 186187.CrossRefGoogle Scholar
Ponnuswamy, P. K. & Thiyagarajan, P. (1978). Solvent accessibilities in the dimeric subunits of RNA and DNA. Biopolymers 17, 25032518.CrossRefGoogle Scholar
Pörshke, D. (1979). The mode of Mg++ binding to oligonucleotides. Inner sphere complexes as markers for recognition? Nucl. Acids Res. 6, 883898.CrossRefGoogle Scholar
Price, C. C., Gaucher, G. M., Koneru, P., Shibakawa, R., Socoa, J. R. & Yamaguchi, M. (1968). Relative reactivities for monofunctional nitrogen mustard alkylation of nucleic acid components. Biochim. biophys. Acta 166, 327359.CrossRefGoogle ScholarPubMed
Pulkrabek, P., Grunberger, D. & Weinstein, I. B. (1974) Effects of ionic environment on modification of yeast tyrosine transfer ribonucleic acid with N-acetoxy-2-acetylaminofluorene. Biochemistry, N.Y. 13, 24142419.CrossRefGoogle ScholarPubMed
Pulkrabek, P., Leffler, S., Weinstein, I. B. & Grunberger, D. (1977). Conformation of DNA modified with a dihydrodiol epoxide derivative of benzo[a]pyrene. Biochemistry 16, 31273132.CrossRefGoogle Scholar
Pullman, A. (1973). SCF ab initio study of the protonation of the peptide bond, Chem. Phys. Lett. 20, 2932.CrossRefGoogle Scholar
Pullman, A. (1974). Molecular electrostatic potentials. A tool for studying biochemical protonation reactions. In Chemical and Biochemical Reactivity, VIth Jerusalem Symposium on Quantum Chemistry and Biochemistry (ed. Bergman, E. D. and Pullman, B.), pp. 113. Dordrecht, Holland: Reidel.Google Scholar
Pullman, A. (1976). Méchanismes d'altération et de Réparation du DNA, Relations avec la Mutagénèse et la Cancérogén`se Chimique. Colloque du C.N.R.S., no. 256, pp. 103113.Google Scholar
Pullman, A. (1981). The molecular potential of B-DNA. In New Horizons in Biological Chemistry, pp. 1929, Nagoya Symposium in honor of Prof. Yagi, K., Tokyo: Japan Scientific Societies Press.Google Scholar
Pullman, A. & Armbruster, A. M. (1977). On the affinity of cytosine towards electrophiles. Theor. chim. Acta 45, 249256.CrossRefGoogle Scholar
Pullman, A. & Armeruster, A. M. (1979). On the sites and mechanisms of alkylation in the nucleic acids. Theor. chim. Acta 50, 359361.CrossRefGoogle Scholar
Pullman, A. & Berthod, H. (1977). An ab initio study of a nucleoside: uridine. Int. J. Quantum Chem. Quantum Biol. Symp. 4, 327336.Google Scholar
Pullman, A. & Berthod, H. (1978). Electrostatic molecular potentials in hydrogen bonded systems. Theor. chim. Acta 48, 269277.CrossRefGoogle Scholar
Pullman, A.Ebbesen, T. & Rholan, M. (1979). Cation binding to biomolecules. VI. SCF ab initio (pseudopotential) computations on the interaction of Zn2+ with the purine and pyrimidine bases of the nucleic acids. Theor. Chim. Acta 51, 247254.CrossRefGoogle Scholar
Pullman, A. & Pullman, B. (1969). Quantum-mechanical investigations of the electronic structure of the nucleic acids and their constituents. Prog nucleic Acid Res. & molec Biol. 9, 327402.CrossRefGoogle ScholarPubMed
Pullman, A. & Pullman, B. (1980). The electrostatic effect of the macro-molecular structure on the biochemical reactivity of the nucleic acids. Significance for chemical carcinogenesis. Int. J. Quantum Chem. Quantum Biol. Symp. 7, 245260.Google Scholar
Pullman, A. & Pullman, B. (1981). The supermolecule approach to the binding of metal cations to nucleic acid bases. In Souvenir Volume on the Occasion of the Golden Jubilee of the Society of Biological Chemists of India. J. Sci. Ind. Res. India 39, 778781.Google Scholar
Pullman, A., Pullman, B. & Berthod, H. (1978). An SCF ab initio investigation of the ‘through water’ interaction of the phosphate anion with the Na+ cation. Theor. chim. Acta. 47, 175192CrossRefGoogle Scholar
Pullman, A., Zakrzewska, Ch. & Perahia, D. (1979). Molecular electrostatic potential of the B-DNA helix. I. Region of the guanine-cytosine base pair. Int. J. Quantum Chem. 16, 395403.CrossRefGoogle Scholar
Pullman, B. (1979). The macromolecular electrostatic effect in biochemical reactivity of the nucleic acids. In Catalysis in Chemistry and Biochemistry, Proceedings of the 12th Jerusalem Symposium in Quantum Chemistry and Biochemistry (ed. Pullman, B.), pp. 110. Dordrecht, Holland: Reidel.Google Scholar
Pullman, B. (1981). Electronic aspects of the interaction of carcinogens with DNA and its constituents. In New Horizons in Biological Chemistry, Nagoya Symposium in honor of Prof. Yagi, K., pp. 3141. Tokyo: Scientific Societies Press.Google Scholar
Pullman, B., Goldblum, A. & Berthod, H. (1977 a) Anion binding to nucleic acid bases. A quantum-mechanical exploration using electrostatic molecular potentials. Biochem. biophys. Res. Commun. 77, 11661169.CrossRefGoogle ScholarPubMed
Pullman, B., Gresh, N., Berthod, H. & Pullman, A. (1977 b). Cation binding to biomolecules. V. Binding of alkali-earth cations to the phosphate group. Conformational effects on the phosphodiester linkage and the polar head of phospholipids. Theor. chim. Acta 44, 151163.CrossRefGoogle Scholar
Pullman, B., Perahia, D. & Cauchy, D. (1979). The molecular electrostatic potential of the B-DNA helix. VI. The regions of the base pairs in poly(dG. dC) and poly(dA. dT). Nucl. Acids Res. 6, 38213830.CrossRefGoogle ScholarPubMed
Pullman, B. & Pullman, A. (1980). Nucleophilicity of DNA. Relation to chemical carcinogenesis. In Carcinogenesis: Fundamental Mechanisms and Environmental Effects, Proceedings of the I3th Jerusalem Symposium in Quantum Chemistry and Biochemistry (ed. Pullman, B., Ts'o, P. O. P. and Gelboin, H.), pp. 5566. Dordecht, Holland: Reidal.CrossRefGoogle Scholar
Pullman, B., Pullman, A. & Berthod, H. (1978). SCF ab initio study of the ‘through-water’ versus direct binding of Na+ and Mg2+ cations to the phosphate anion. Int. J. Quantum Chem. Quantum Biol. Symp. 5, 7990.Google Scholar
Pullman, B. & Saran, A. (1976). Quantum-mechanical studies on the conformation of nucleic acids and their constituents. Prog. nucleic Acid Res. & molec. Biol. 18, 215322.CrossRefGoogle ScholarPubMed
Quigley, J. G., Teeter, M. M. & Rich, A. (1978). Structural analysis of spermine and magnesium binding to yeast phenylalanine transfer RNA. Proc. natn. Acad. Sci. U.S.A. 75, 6468.CrossRefGoogle ScholarPubMed
Reinert, K. E., Stuttar, E. & Schweiss, H. (1979). Aspects of specific protein DNA-interactions: multi-mode binding of the oligopeptide antibiotic netropsin to (A-T)-rich DNA segments. Nucl. Acids. Res. 7, 13751392.CrossRefGoogle Scholar
Rhodes, D. (1975). Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification. J. molec. Biol. 94, 449460.CrossRefGoogle ScholarPubMed
Roberts, J. J. & Thomson, A. J. (1979). The mechanism of action of anti-tumor platinum compounds. Prog. nucleic Acid Res. and molec. Biol. 22, 71133.CrossRefGoogle Scholar
Robins, A. B. (1973 a). The reaction of 14C-labelled platinum ethylenediamine dichloride with nucleic acid constituents. Chem. Biol. Inter. 6, 3545.CrossRefGoogle Scholar
Robins, A. B. (1973 b). The reaction of 14C-labelled platinum ethylenediamine dichioride with adenine compounds and DNA. Chem. Biol. Inter. 7, 1116.CrossRefGoogle ScholarPubMed
Rose, D. M., Bleam, M. L., Record, M. T. Jr & Bryan, R. G. (1980), 25Mg NMR in DNA solutions: dominance of site binding effects. Proc. natn. Acad. Sci. U.S.A. 77, 62896292.CrossRefGoogle ScholarPubMed
Rosenberg, B. (1977). On the mechanisms of action of platinum complexes as anti-cancer agents. J. Univ. Hematol. Oncol. 7, 817–827.Google Scholar
Rosenberg, B. (1978). Noble metal complexes in cancer chemotherapy. In Inorganic and Nutritional Aspects of Cancer (ed. Schrauzer, G. N.), pp. 129150. New York: Plenum.CrossRefGoogle Scholar
Sage, E. & Leng, M. (1980). Conformation of poly (dG. dC) poly (dG. dC) modified by the carcinogens N-acetoxy-N-acetyl-2-aminofiuorene and N-hydroxy-N-2-aminofluorene. Proc. natn. Acad. Sci. U.S.A. 77, 45974601.CrossRefGoogle ScholarPubMed
Sander, Ch. & Ts'o, P. O. P. (1971). Binding of Mg2+ ions by nucleic acids. J. molec. Biol. 55, 121.CrossRefGoogle Scholar
Scovell, W. M. & Reaoch, R. S. (1971) Interaction of aquated cis-(NH3)2PtII with homopolynucleotides. J. Am. chem. Soc. 101, 174180.CrossRefGoogle Scholar
Scrocco, E. & Tomasi, J. (1973). The electrostatic molecular potential as a useful tool for the interpretation of some molecular properties. Top. Current Chem. 42, 95150.Google Scholar
Scrocco, E. & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 11, 115193.CrossRefGoogle Scholar
Shapiro, J. T., Leng, M. & Felsenfeld, G. (1969). Deoxyribonucleic acidpolylysine complexes. Structure and nucleotide specificity. Biochemistry, N.Y. 8, 32193232.CrossRefGoogle ScholarPubMed
Singer, B. (1972). Reaction of guanosine with ethylating agents. Biochemistry, N.Y. 11, 39393947.CrossRefGoogle ScholarPubMed
Singer, B. (1975). The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog. nucleic Acid Res. & molec Biol. 15, 219332.CrossRefGoogle ScholarPubMed
Singer, B. (1976). O2-alkylcytidine. A new major product of neutral aqueous reaction of cytidine with carcinogens, FEBS Lett. 63, 8588.Google ScholarPubMed
Singer, B. (1977 a). Sites in nucleic acids reacting with alkylating agents of differing carcinogenicity or mutagenicity. J. Toxicol. & Environ. Health, 2, 12791295.CrossRefGoogle ScholarPubMed
Singer, B. (1977 b). Nucleic acid alkylation, mutation and carcinogenesis: is there a relationship? TIBS, pp. 180182.CrossRefGoogle Scholar
Singer, B. & Fraenkel-Conrat, H. (1969). Chemical modifications of viral ribonucleic acid. VII. The action of methylating agents and nitrosoguanidine on polynucleotides including tobacco mosaic virus ribonucleic acid. Biochemistry, N.Y. 8, 32603266.CrossRefGoogle ScholarPubMed
Spodheim-Maurizot, M.Saint-Ruf, G. & Leng, M. (1979). Conformational changes induced in DNA by in vitro reaction with N-hydroxy-N-2-aminofluorene. Nucl. Acids Res. 6, 16831694.CrossRefGoogle ScholarPubMed
Sprinzl, M., Grueter, F., Spelzhaus, A. & Gauss, D. H. (1980). Compilation of tRNA sequences. Nucl. Acids Res. 8, r1–r22.CrossRefGoogle ScholarPubMed
Stout, C. D., Mizuno, H., Rubin, J., Brennam, T., Rao, S. T. & Sundaralingam, M. (1976). Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA. An independent investigation. Nucl. Acids Res. 3, 11111123.CrossRefGoogle ScholarPubMed
Sun, L. & Singer, B. (1974). Reaction of cytidine with ethylating agents. Biochemistry, N.Y. 13, 19051920.CrossRefGoogle ScholarPubMed
Sundaralingan, M. (1979). Stereochemistry of nucleic acids and their constituents. Biopolymers 7, 821860.Google Scholar
Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M. & Kim, J. H. (1978). Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. molec. Biol. 123, 607630.CrossRefGoogle ScholarPubMed
Sussman, J. L. & Kim, S.-H. (1976). Three-dimensional structure of a transfer RNA in two crystal forms. Science, N. Y. 192, 853858.CrossRefGoogle ScholarPubMed
Suwalsky, M., Traub, W., Ihmueli, U. & Soubirana, J. A. (1969). An X-ray study of the interaction of DNA with spermine. J. molec. Biol. 42, 363373.CrossRefGoogle ScholarPubMed
Swenson, D. H., Miller, E. C. & Miller, J. A. (1974). Aflatoxin B1-2,3 oxide: evidence of its formation in rat liver in vivo and by human liver macrosomes in vitro. Biochem. biophys. Res. Commun. 60, 10361043.CrossRefGoogle Scholar
Swenson, D. H., Miller, J. A. & Miller, E. C. (1975). The reactivity and carcinogenicity of aflatoxin B1-2,3-dichloride, a model for the putative 2,3-oxide metabolite of aflatoxin B1. Cancer Res. 35, 38113823.Google Scholar
Tarpley, W. G., Miller, J. A. & Miller, E. C. (1980). Adducts from the reaction of N-benzoyloxy-N-methyl-4 aminoazobenzene with deoxyguanosine or DNA in vitro from hepatic DNA of mice treated with N-methyl or N, N-dimethyl-4 aminoazobenzene. Cancer Res. 40, 24932499.Google ScholarPubMed
Teeter, M. M., Quigley, G. J. & Rich, A. (1980). Metal ions and transfer RNA. In Nucleic Acid-metal Ions Interactions (ed. Spiro, T. G.), pp. 145177. New York: Wiley.Google Scholar
Thiyagarajan, P. & Ponnuswamy, R. K. (1979). Solvent accessibility study on tRNAPhe. Biopolymers 18, 22332247.CrossRefGoogle Scholar
Trand-Dinh, S. & Neumann, J. (1977). A31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates. Nucl. Acids Res. 4, 397403.CrossRefGoogle Scholar
Varshavsky, Ya. M. (1976). Proton transfer in biopolymers. Stud. Biophys. 57, 112.Google Scholar
Vlassov, V. V., Giégé, R.Ebel, J. P. (1980). The tertiary structure of yeast tRNAPhe in solution studied by phosphodiester bond modification with ethylinisourea. FBSE Lett. 120, 1216.CrossRefGoogle Scholar
Wang, A. H.-J., Quigley, G. J., Kolpak, F. J.Crawford, J. L., Van Boom, J. H.Van der Marel, G. & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, Lond. 282, 680686.CrossRefGoogle ScholarPubMed
Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Van, der Marel, Van Boom, J. H. & Rich, A. (1980). Left-handed double helical DNA: variations in the backbone conformations. Science, N.Y. 211, 171176.CrossRefGoogle Scholar
Webb, J. L. (1963). In Enzymes and Metabolic Inhibitors. New York: Academic Press.CrossRefGoogle Scholar
Weinstein, I. B., Jeffrey, A. M., Jennette, K. W., Blobstein, S. H., Harvey, R. G., Harris, C., Autrup, H., Kasai, H. & Nakanishi, K. (1976). Benzo[a]pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science, N.Y. 193 592595.CrossRefGoogle Scholar
Wing, R., Drew, H., Takano, T., Broka, Ch., Tanaka, S., Itakura, K. & Dickerson, R. E. (1980). Crystal structure analysis of a complete turn of B-DNA. Nature, Lond. 287, 755758.CrossRefGoogle ScholarPubMed
Woo, N. H., Seeman, N. C. & Rich, A. (1979). Crystal structure of putrescine diphosphate: a model system for amine-nucleic and interactions. Biopolymers 18, 539552.CrossRefGoogle Scholar
Yamasaki, H.Pulkrabek, P., Grunberger, D. & Weinstein, I. B. (1977). Differential excision from DNA of the C8 and N2-guanosine adducts of N-acetyl-2-aminofluorene by single strand specific endonuclease. Cancer Res. 37, 37563762.Google Scholar
Zakrzewska, K., Lavery, R., Pullman, A. & Pullman, B. (1980). The electrostatic potential and steric accessibility of reactive sites within Z-DNA. Nucl. Acids Res. 8, 39173932.CrossRefGoogle ScholarPubMed
Zubay, G. (1958). Mechanism of mild acid denaturation of deoxyribonucleic acid. Biochim. biophys. Acta 28, 644645.CrossRefGoogle ScholarPubMed