Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-20T05:21:35.426Z Has data issue: false hasContentIssue false

The application of the molecular replacement method to the de novo determination of protein structure

Published online by Cambridge University Press:  17 March 2009

Michael C. Lawrence
Affiliation:
CSIRO Division of Biomolecular Engineering, 343 Royal Parade, Parkville, Victoria 3052, Australia

Extract

The determination of a novel protein structure by X-ray diffraction is seldom straightforward. Three hurdles present themselves (i) the protein must be purified in sufficient quantity to allow crystallization trials, (ii) crystals must be grown to adequate size and must diffract to a resolution that will allow atomic detail to be revealed, and (iii) phases must be determined for the diffracted X-ray beams in order that an initial electron-density map may be calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

9. References

Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. (1989). The three-dimensional structure of the foot-and-mouth disease virus at 2·9 Å resolution. Nature (London) 337, 709716.Google Scholar
Argos, P. & Rossman, M. G. (1980). Molecular replacement method. In Theory and Practice of Direct Methods in Crystallography (ed. Ladd, M. F. C. & Palmer, R. A.), pp. 361417. New York: Plenum.CrossRefGoogle Scholar
Argos, P., Ford, G. C. & Rossman, M. G. (1975). An application of the molecular replacement technique in direct space to a known protein structure. Acta Crystallogr. A31, 499506.Google Scholar
Arnold, E. & Rossman, M. G. (1986). Effects of errors, redundancy, and solvent content in the molecular replacement procedure for the structure determination of biological macromolecules. Proc. natn. Acad. Sci. U.S.A. 83, 54895493.Google Scholar
Arnold, E., Vriend, G., Luo, M., Griffith, J. P., Kamer, G., Erickson, J. W., Johnson, J. E. & Rossman, M. G. (1987). The structure determination of a common cold virus, human rhinovirus 14. Acta Crystallogr. A43, 346361.CrossRefGoogle Scholar
Bricogne, G. (1974). Geometric sources of redundancy in intensity data and their use for phase determination. Acta Crystallogr. A30, 395405.CrossRefGoogle Scholar
Bricogne, G. (1976). Methods and programs for direct-space exploitation of geometric redundancies. Acta Crystallogr. A32, 832847.CrossRefGoogle Scholar
Bricogne, G. (1982). Generalized density-modification methods. In Computational Crystallography (ed. Sayre, D.), pp. 258264. New York: Oxford University Press.Google Scholar
Chen, Z., Stauffacher, C., Li, Y., Schmidt, T., Bomu, W., Kamer, G., Shanks, M., Lomonossoff, G. & Johnson, J. E. (1989). Protein-RNA interactions in an icosahedral virus at 3·0 Å resolution. Science 245, 154159.CrossRefGoogle Scholar
Cherfils, J. & Dumas, C. (1988). MEDIT: an interactive graphics editor for molecular envelopes. J. Appl. Crystallogr. 21, 985987.CrossRefGoogle Scholar
Colman, P. M. (1974). Noncrystallographic symmetry and the sampling theorem. Z. Krist. 140, 344349.Google Scholar
Colman, P. M., Fehlhammer, H. & Bartels, K. (1976). Patterson search methods in protein structure determination: β-trypsin and immunoglobulin fragments. In Crystallographic Computing Techniques (ed. Ahmed, F. R.Huml, K. and Sedlacek, B.), pp. 248258. Copenhagen: Munksgaard.Google Scholar
Crick, F. H. C. & Watson, J. D. (1956). Structure of small viruses. Nature (London) 177, 473475.Google Scholar
Crowther, R. A. (1967). A linear analysis of the non-crystallographic symmetry problem. Acta Crystallogr. 22, 758764.Google Scholar
Crowther, R. A. (1969). The use of non-crystallographic symmetry for phase determination. Acta Crystallogr. B25, 25712580.Google Scholar
Crowther, R. A. (1972). The fast rotation function. In The Molecular Replacement Method (ed. Rossman, M. G.), pp. 173178. New York: Gordon & Breach.Google Scholar
Crowther, R. A. & Blow, D. M. (1967). A method of positioning a known molecule in an unknown crystal structure. Acta Crystallogr. 23, 544548.CrossRefGoogle Scholar
Gaykema, W. P. J., Hol, W. G. J., Vereijken, J. M., Soeter, N. M., Bak, H. J. & Beintema, J. J. (1984). 3·2 Å structure of the copper-containing oxygen-carrying protein Panulirus interruptus haemocyanin. Nature (London) 309, 2329.CrossRefGoogle Scholar
Gaykema, W. P. J., Volbeda, A. & Hol, W. G. J. (1985). Structure determination of Panulirus interruptus haemocyanin at 3·2 Å resolution. Successful phase extension by sixfold density averaging. J. molec. Biol. 187, 255275.CrossRefGoogle Scholar
Grau, U. M., Rossman, M. G. & Trommer, W. E. (1981). The crystallization and structure determination of an active ternary complex of pig heart lactate dehydrogenase. Acta Crystallogr. B37, 20192026.Google Scholar
Harada, Y., Lifchitz, A., Berthou, J. & Jolles, P. (1981). A translation function combining packing and diffraction information: an application to lysozyme (high-temperature form). Acta Crystallogr. A37, 398406.CrossRefGoogle Scholar
Hogle, J. M., Chow, M. & Filman, D. J. (1985). Three-dimensional structure of poliovirus at 2·9 Å resolution. Science 229, 13581365.Google Scholar
Hogle, J. M., Maeda, A. & Harrison, S. C. (1986). Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3·2 Å resolution. J. molec. Biol. 191, 625638.Google Scholar
Hosur, M. V., Schmidt, T., Tucker, R. C., Johnson, J. E.Gallagher, T. M., Selling, B. H. & Rueckert, R. R. (1987). Structure of an insect virus at 3·0 Å resolution. Proteins: Struct. Fund. Genetics 2, 167176.CrossRefGoogle ScholarPubMed
Hoppe, W. (1957). The folding-molecule method and its application to the structure analysis of biflorine (C20H20O4). Z. Elektrochem. 61, 10761083.Google Scholar
Huber, R. (1972). Programmed ‘faltmolekül’ method. In The Molecular Replacement Method (ed. Rossman, M. G.), pp. 165171. New York: Gordon & Breach.Google Scholar
Jack, A. (1973). Direct determination of X-ray phases for tobacco mosaic virus proteins using non-crystallographic symmetry. Acta Crystallogr. A29, 545554.Google Scholar
Johnson, J. E. (1978). Averaging of electron density maps. Acta Crystallogr. B34, 576577.Google Scholar
Jones, E. Y., Stuart, D. I. & Walker, N. P. C. (1989). Structure of tumour necrosis factor. Nature (London) 338, 225228.CrossRefGoogle ScholarPubMed
Kim, S., Smith, T. J., Chapman, M. S., Rossman, M. G., Pevear, D. C., Dutko, F. J., Felock, P. J., Diana, G. D. & McKinlay, M. A. (1989). Crystal structure determination of human rhinovirus serotype 1A (HRV1A). J. molec. Biol. 210, 91111.CrossRefGoogle ScholarPubMed
Kitagawa, Y., Tanaka, N., Hata, Y., Kusunoki, M., Lee, G., Katsube, Y., Asada, K., Aibara, S. & Morita, Y. (1991). Three-dimensional structure of Cu, Znsuperoxide dismutase from spinach at 2·0 Å resolution. J. Biochem. 109, 477485.CrossRefGoogle ScholarPubMed
Ladenstein, R., Schneider, M., Huber, R., Bartunik, H.-D., Wilson, K., Schott, K. & Bacher, A. (1988). Heavy riboflavin synthase from Bacillus subtilis: crystal structure analysis of the icosahedral β60 capsid at 3·3 Å resolution. J. molec. Biol. 203, 10451070.CrossRefGoogle Scholar
Lattman, E. (1985). Use of rotation and translation functions. Methods in Enzymology 115, 5577.CrossRefGoogle ScholarPubMed
Lawrence, M. C., Suzuki, E., Varghese, J. N., Davis, P. C., Van Donkelaar, A., Tulloch, P. A. & Colman, P. M. (1990). The three-dimensional structure of the seed storage protein phaseolin at 3 Å resolution. EMBO J. 9, 915.Google Scholar
Leslie, A. G. W. (1987). A reciprocal-space method for calculating a molecular envelope using the algorithm of B. C. Wang. Acta Crystallogr. A43, 134136.Google Scholar
Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E., Rossman, M. G., Boege, U., Scraba, D. G., Duke, G. M. & Palmenberg, A. C. (1987). The atomic structure of Mengo virus at 3·0 Å resolution. Science 235, 182191.Google Scholar
Luo, M., Vriend, G., Kamer, G. & Rossman, M. G. (1989). Structure determination of Mengo virus. Acta Crystallogr. B45, 8592.Google Scholar
Main, P. (1967). Phase determination using non-crystallographic symmetry. Acta Crystallogr. 23, 5054.CrossRefGoogle Scholar
Main, P. & Rossman, M. G. (1966). Relationships among structure factors due to identical molecules in different crystallographic environments. Acta Crystallogr. 21, 6772.Google Scholar
Nixon, P. E. & North, A. C. T. (1976). Crystallographic relationship between human and hen-egg lysozymes. I. Methods for the establishment of molecular orientational and positional parameters. Acta Crystallogr. A32, 320325.Google Scholar
Nordlund, P., Sjöberg, B. M. & Eklund, H. (1990). Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature (London) 345, 593598.CrossRefGoogle ScholarPubMed
Nordman, C. E. (1980). Procedures for detection and idealization of non-crystallographic symmetry with application to phase refinement of the satellite tobacco necrosis virus structure. Acta Crystallogr. A36, 747754.Google Scholar
Piontek, K., Chakrabarti, P., Schär, H-P., Rossman, M. G. & Zuber, H. (1990). Structure determination and refinement of Bacillus stearothermophilus lactate dehydrogenase. Proteins: Struct. Funct. Genetics 7, 7492.Google Scholar
Rayment, I. (1983). Molecular replacement method at low resolution: optimum strategy and intrinsic limitations as determined by calculations on icosahedral virus models. Acta Crystallogr. A39, 102116.CrossRefGoogle Scholar
Rayment, I., Baker, T. S., Caspar, D. L. D. & Murakami, W. T. (1982). Polyoma virus capsid structure at 22·5 Å resolution. Nature (London) 295, 110115.Google Scholar
Rayment, I., Baker, T. S. & Caspar, D. L. D. (1983). A description of the techniques and application of molecular replacement used to determine the structure of polyoma virus capsid at 22·5 Å resolution. Acta Crystallogr. B39, 505516.CrossRefGoogle Scholar
Read, R. J. & Schierbeek, A. J. (1988). A phased translation function. J. appl. Crystallogr. 21, 490495.Google Scholar
Rees, D. C. (1983). Largest likely values for R factors calculated after phase refinement by non-crystallographic symmetry averaging. Acta Crystallogr. A39, 916920.Google Scholar
Rees, D. C. (1990). An envelope-based approach for direct phase determination of macromolecular structure. Acta Crystallogr. A46, 915922.CrossRefGoogle Scholar
Roderick, S. L. & Banaszak, L. J. (1986). The three-dimensional structure of porcine heart mitochondrial malate dehydrogenase at 3·0 Å resolution. J. biol. Chem. 261, 94619464.Google Scholar
Rossman, M. G. (1972). The Molecular Replacement Method. New York: Gordon & Breach.Google Scholar
Rossman, M. G. (1982). The use of non-crystallographic symmetry. In Computational Crystallography (ed. Sayre, D.), pp. 159173. New York: Oxford University Press.Google Scholar
Rossman, M. G. (1990). The molecular replacement method. Acta Crystallogr. A46, 7382.CrossRefGoogle Scholar
Rossman, M. G. & Blow, D. M. (1962). The detection of subunits within the crystallographic asymmetric unit. Acta Crystallogr. 15, 2431.CrossRefGoogle Scholar
Rossman, M. G. & Blow, D. M. (1963). Determination of phases by the conditions of non-crystallographic symmetry. Acta Crystallogr. 16, 3945.CrossRefGoogle Scholar
Rossman, M. G. & Blow, D. M. (1964). Solution of the phase equations representing non-crystallographic symmetry. Acta Crystallogr. 17, 14741475.Google Scholar
Rossman, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H.-J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. & Vriend, G. (1985). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (London) 317, 145153.Google Scholar
Schirmer, T. & Evans, P. R. (1990). Structural basis of the allosteric behaviour of phosphofructokinase. Nature (London) 343, 140145.CrossRefGoogle ScholarPubMed
Shannon, C. E. (1949). Communication in the presence of noise. Proc. Inst. Radio Engrs 37, 1021.Google Scholar
Subbiah, S. (1991). Low-resolution real-space envelopes: an approach to the ab initio macromolecular phase problem. Science 252, 128133.CrossRefGoogle Scholar
Tong, L. & Rossman, M. G. (1990). The locked rotation function. Acta Crystallogr. A46, 783792.Google Scholar
Tsao, J., Chapman, M. S., Agbandje, M., Keller, W., Smith, K., Wu, H., Luo, M., Smith, T. J., Rossman, M. G., Compans, R. W. & Parrish, C. R. (1991). The three-dimensional structure of canine parvovirus and its functional implications. Science 251, 14561464.CrossRefGoogle ScholarPubMed
Vålegard, K., Liljas, L., Fridborg, K. & Unge, T. (1990). The three-dimensional structure of the bacterial virus MS 2. Nature (London) 345, 3641.Google Scholar
Wang, B. C. (1985). Resolution of phase ambiguity in macromolecular crystallography. Methods in Enzymology 115, 90112.Google Scholar