Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T12:13:03.652Z Has data issue: false hasContentIssue false

Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP

Published online by Cambridge University Press:  18 July 2016

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0–24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0–26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0–12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4–26.0 cal kyr B P. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Bard, E, Ménot-Combes, G, Rosek, F. 2004. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon, this issue.CrossRefGoogle Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Herrera-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292:2453–8.CrossRefGoogle ScholarPubMed
Becker, B, Kromer, B. 1986. Extension of the Holocene dendrochronology by the Preboreal pine series, 8800 to 10,100 BP. Radiocarbon 28(2B):961–7.CrossRefGoogle Scholar
Braziunas, TF, Fung, IY, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9:565–84.CrossRefGoogle Scholar
Buck, CE, Blackwell, PG. 2004. Formal statistical models for estimating radiocarbon calibration curves. Radiocarbon, this issue.CrossRefGoogle Scholar
Burr, GS, Galang, C, Taylor, FW, Gallup, C, Edwards, RL, Cutler, KB, Quirk, B. 2004. Radiocarbon results from a 13-kyr BP coral from the Huon Peninsula, Papua New Guinea. Radiocarbon, this issue.CrossRefGoogle Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Récy, J, Cheng, H, Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon, this issue.CrossRefGoogle Scholar
Damon, PE, Burr, G, Peristykh, AN, Jacoby, GC, Darrigo, RD. 1996. Regional radiocarbon effect due to thawing of frozen earth. Radiocarbon 38(3):597602.CrossRefGoogle Scholar
de Jong, AFM, Becker, B, Mook, WG. 1986. High-precision calibration of the radiocarbon time scale, 3930–3230 cal BC. Radiocarbon 28(2B):939–41.CrossRefGoogle Scholar
de Jong, AFM, Becker, B, Mook, WG. 1989. Corrected calibration of the radiocarbon time scale. Radiocarbon 31(2):201–10.Google Scholar
Dellinger, F, Kutschera, W, Steier, P, Wild, EM, Nicolussi, K, Scheißling, P. 2004. A 14C calibration with AMS from 3500 to 3000 BC, derived from a new high-elevation stone-pine tree-ring chronology. Radiocarbon 46(2):969–78.CrossRefGoogle Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Guilderson, TP, Cao, L, Kaplan, A, Bloom, A. Forthcoming. Marine radiocarbon calibration curve spanning 7000 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews. Google Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon, this issue CrossRefGoogle Scholar
Hogg, AG, McCormac, FG, Higham, TFG, Reimer, PJ, Baillie, MGL, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44(3):633–40.CrossRefGoogle Scholar
Hoper, ST, McCormac, FG, Hogg, AG, Higham, TFG, Head, MJ. 1998. Evaluation of wood pretreatments on oak and cedar. Radiocarbon 40(1):4550.CrossRefGoogle Scholar
Hughen, KA, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, FG, Manning, SW, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004a. Marine04 marine radiocarbon age calibration, 26–0 kyr BP. Radiocarbon, this issue a.CrossRefGoogle Scholar
Hughen, KA, Southon, JR, Bertrand, CJH, Frantz, B, Zermeño, P. 2004b. Cariaco Basin calibration update: revisions to calendar and 14C chronologies for core PL07-58PC. Radiocarbon, this issue b.CrossRefGoogle Scholar
Hughen, KA, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202–7.CrossRefGoogle ScholarPubMed
Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:1951–4.CrossRefGoogle ScholarPubMed
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3): 369–80.CrossRefGoogle Scholar
Kromer, B, Ambers, J, Baillie, MGL, Damon, PE, Hesshaimer, V, Hofmann, J, Jöris, O, Levin, I, Manning, SW, McCormac, FG, van der Plicht, J, Spurk, M, Stuiver, M, Weninger, B. 1996. Report: summary of the workshop “Aspects of High-Precision Radiocarbon Calibration.” Radiocarbon 38(3):607–10.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 gradients in the troposphere: magnitude, mechanisms and consequences. Science 294:2529–32.CrossRefGoogle ScholarPubMed
Kromer, B, Rhein, M, Bruns, M, Schochfischer, H, Münnich, KO, Stuiver, M, Becker, B. 1986. Radiocarbon calibration data for the 6th to the 8th millennia BC. Radiocarbon 28(2B):954–60.CrossRefGoogle Scholar
Linick, TW, Long, A, Damon, PE, Ferguson, CW. 1986. High-precision radiocarbon dating of bristlecone pine from 6554 to 5350 BC. Radiocarbon 28(2B):943–53.CrossRefGoogle Scholar
Manning, SW, Barbetti, M, Kromer, B, Kuniholm, PI, Levin, I, Newton, MW, Reimer, PJ. 2002. No systematic early bias to Mediterranean 14C ages: radiocarbon measurements from tree-ring and air samples provide tight limits to age offsets. Radiocarbon 44(3):739–54.CrossRefGoogle Scholar
Manning, SW, Kromer, B, Kuniholm, PI, Newton, MW. 2001. Anatolian tree rings and a new chronology for the east Mediterranean Bronze-Iron Ages. Science 294:2532–5.CrossRefGoogle Scholar
McCormac, FG, Bayliss, A, Baillie, MGL. 2004. Radiocarbon calibration in the Anglo-Saxon period: AD 495–725. Radiocarbon, this issue.CrossRefGoogle Scholar
McCormac, FG, Reimer, PJ, Hogg, AG, Higham, TFG, Baillie, MGL, Palmer, J, Stuiver, M. 2002. Calibration of the radiocarbon time scale for the Southern Hemisphere: AD 1850–950. Radiocarbon 44(3):641–51.CrossRefGoogle Scholar
Mitchell, JJ, Dzerdzeevskii, M, Flohn, H, Hofmeyr, WL, Lamb, HH. 1966. Climatic Change. Geneva: World Meterological Organization. 79 p.Google Scholar
Pearson, GW, Becker, B, Qua, F. 1993. High-precision 14C measurement of German and Irish oaks to show the natural 14C variations from 7890 to 5000 BC. Radiocarbon 35(1):93104.CrossRefGoogle Scholar
Pearson, GW, Pilcher, JR, Baillie, MGL, Corbett, DM, Qua, F. 1986. High-precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840 to 5210 BC. Radiocarbon 28(2B):911–34.CrossRefGoogle Scholar
Pilcher, JR, Baillie, MGL, Schmidt, B, Becker, B. 1984. A 7,272-year tree-ring chronology for western Europe. Nature 312:150–2.CrossRefGoogle Scholar
Reimer, PJ, Hughen, KA, Guilderson, TP, McCormac, FG, Baillie, MGL, Bard, E, Barratt, P, Beck, JW, Brown, DM, Buck, CE, Damon, PE, Friedrich, M, Kromer, B, Ramsey, CB, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, van der Plicht, J. 2002. Preliminary report of the first workshop of the IntCal04 Radiocarbon Calibration/Comparison Working Group. Radiocarbon 44(3): 653–61.CrossRefGoogle Scholar
Sakamoto, M, Imamura, M, van der Plicht, J, Mitsutani, T, Sahara, M. 2003. Radiocarbon calibration for Japanese wood samples. Radiocarbon 45(1):81–9.CrossRefGoogle Scholar
Schramm, A, Stein, M, Goldstein, SL. 2000. Calibration of the 14C time scale to >40 ka by 234U-230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 175:2740.CrossRefGoogle Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, HH, Kromer, B. 1998. Revisions and extension of the Hohenheim oak and pine chronologies: new evidence about the timing of the Younger Dryas/ Preboreal transition. Radiocarbon 40(3):1107–16.CrossRefGoogle Scholar
Stuiver, M. 1982. A high-precision calibration of the AD radiocarbon time scale. Radiocarbon 24(1):126.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Stuiver, M, Quay, PD. 1981. A 1600-year-long record of solar change derived from atmospheric 14C levels. Solar Physics 74:479–81.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998a. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.CrossRefGoogle Scholar
van der Borg, K, Stein, M, de Jong, AFM, Waldmann, N, Goldstein, S. 2004. Near-zero Δ14C values at 32 kyr cal BP observed in the high-resolution 14C record from U-Th dated sediment of Lake Lisan. Radiocarbon 46(2): 785–96.CrossRefGoogle Scholar
van der Plicht, J, Beck, JW, Bard, E, Baillie, MGL, Blackwell, PG, Buck, CE, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Richards, DA, Southon, JR, Stuiver, M, Weyhenmeyer, CE. 2004. NotCal04—Comparison/Calibration 14C records 26–50 cal kyr B P. Radiocarbon, this issue.CrossRefGoogle Scholar
van Kreveld, S, Sarntheim, M, Erlenkeuser, H, Grootes, PM, Jung, S, Nadeau, MJ, Pflaumann, U, Voelker, A. 2000. Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60–18 kyr. Paleoceanography 15: 425–42.CrossRefGoogle Scholar
Voelker, AHL, Grootes, PM, Nadeau, MJ, Sarntheim, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the Earth's magnetic field intensity. Radiocarbon 42(3):437–52.CrossRefGoogle Scholar
Vogel, JC, Fuls, A, Visser, E, Becker, B. 1986. Radiocarbon fluctuations during the 3rd millennium BC. Radiocarbon 28(2B):935–8.CrossRefGoogle Scholar
Vogel, JC, van der Plicht, J. 1993. Calibration curve for short-lived samples, 1900–3900 BC. Radiocarbon 35(1):8791.CrossRefGoogle Scholar
Weyhenmeyer, CE, Burns, S, Fleitmann, D, Kramers, JD, Matter, A, Waber, HN, Reimer, PJ. 2003. Changes in atmospheric 14C between 55 and 42 ky BP recorded in a stalagmite from Socotra Island, Indian Ocean. EOS Transactions AGU 84 (46): Fall Meeting Supplement Abstract PP32B-0298.Google Scholar