Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T17:33:08.259Z Has data issue: false hasContentIssue false

Layers for ion beam energy conversion into black body radiation

Published online by Cambridge University Press:  09 March 2009

J. Meyer-Ter-Vehn
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, Federal Republic of Germany
K. Unterseer
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, Federal Republic of Germany

Abstract

The radiation hydrodynamics of material layers for energy conversion of intense ion beams into black body radiation is investigated, both analytically and numerically. Conversion efficiency and hydrodynamic losses are the main topics. The basic scaling relations are derived and compared with computer simulations. Although the analysis is done for slab geometry, a generalization to converters of arbitrary shape and deposition geometry is outlined. The code MINIRA is briefly described. The influence of varying layer density, optical thickness and beam power on radiation emission as well as the effect of Bragg peak deposition are discussed in detail. High conversion efficiencies of more than 50% can be obtained provided that the converter is operated in the radiative regime. For typical beam intensities, this requires low-density layers. Another essential feature is supersonic heat transport which occurs in the radiative regime.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, R., Meyer-ter-Vehn, J. 1948 Proc. of INS Int. Symp. on Heavy Ion Accelerators and Their Applications to Inertial Fusion (ed. Hirao, Y.Katayama, T. and Tokuda, N.) Inst. Nuclear Study, Tokyo, page 858.Google Scholar
Bennet, B. I., Johnson, J. D., Kerley, G. I., Rood, G. T. 1978 Los Alamos Nat. Lab., report LA-7310.Google Scholar
Bernstein, J. & Dyson, F. J., 1959 General Atomic Report GA-848; see also: Armstrong, B. H. 1962 Astrophys. J. 136, 309, and Armstrong, B. H., Johnston, R. R., Kelly, P. S. 1965 J.Q.S.R.T. 5, 55.Google Scholar
Bogolyubskii, S. L., Gerasimov, V. I., Liksonov, V. I., Mikhailov, A. P., Popov., Yu. P., Rudakov, L. I., Samarski, A. A., Smirnov, V. P. 1976 Sov. Phys. JETP Lett. 24, 178.Google Scholar
Johnson, Th. H. 1984 Proc. of IEEE, 72, 548.CrossRefGoogle Scholar
Mehlhorn, T. A. 1981 J. Applied Phys. 52, 1856.CrossRefGoogle Scholar
Metzler, N., Meyer-ter-Vehn, J. 1984 Laser and Particle Beams, 2, 27.CrossRefGoogle Scholar
Meyer-ter-Vehn, J. 1982 Nucl. Fusion 22, 561.CrossRefGoogle Scholar
Meyer-ter-Vehn, J., Pakula, R., Sigel, R., Unterseer, K. 1984 Phys. Letts., 104, 410.CrossRefGoogle Scholar
Pakula, R., Sigel, R. 1983 Max-Planck-Institut für Quantenoptik, Garching/FEG, report MPQ 81 and Phys. Fluids, 28, 232.CrossRefGoogle Scholar
Unterseer, K., Meyerter-Vehn, J. 1984a Jap. J. Appl. Phys. 23, L728.CrossRefGoogle Scholar
Unterseer, K. & Meyer-ter-Vehn, J. 1984b ‘MINIRA – a computer code for one-dimensional radiation-hydrodynamical simulations’, Max-Planck-Institut für Quantenoptik, report MPQ 82.Google Scholar
VanDevender, J. P. 1984 Proc. 5th Int. Conf. on High Power Particle Beams, Sept. 12–14, 1983, San Francisco, eds. Briggs, R. J. and Toepfer, A. J., page 17.Google Scholar
Winterberg, F. 1982 Atomkernenergie/Kerntechnik, 41, 291.Google Scholar
Witkowski, S. 1985 Proc. 10th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, London, Sept. 12–19, 1984, Summary Talk on Inertial Confinement Fusion, Nucl. Fusion, 25, 224.Google Scholar
Yamanaka, C. 1984 Laser and Particle Beams, 2, 425; see also: Proc. of INS Int. Symp. on Heavy Ion Accelerators and Their Applications to Inertial Fusion (eds. Hirao, Y.Katayama, T. and Tokuda, N.), Inst. Nuclear Study, Tokyo, page 56 and 584.Google Scholar
Zeldovich, Ya. B. & Raizer, Yu. P. 1966, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic Press, New York, Vol. I, page 164ff.Google Scholar