Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T19:50:35.333Z Has data issue: false hasContentIssue false

Developments in inertial fusion energy and beam fusion at magnetic confinement

Published online by Cambridge University Press:  01 October 2004

HEINRICH HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia

Abstract

The 70-year anniversary of the first nuclear fusion reaction of hydrogen isotopes by Oliphant, Harteck, and Rutherford is an opportunity to realize how beam fusion is the path for energy production, including both branches, the magnetic confinement fusion and the inertial fusion energy (IFE). It is intriguing that Oliphant's basic concept for igniting controlled fusion reactions by beams has made a comeback even for magnetic confinement plasma, after this beam fusion concept was revealed by the basically nonlinear processes of the well-known alternative of inertial confinement fusion using laser or particle beams. After reviewing the main streams of both directions some results are reported—as an example of possible alternatives—about how experiments with skin layer interaction and avoiding relativistic self-focusing of clean PW–ps laser pulses for IFE may possibly lead to a simplified fusion reactor scheme without the need for special compression of solid deuterium–tritium fuel.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azechi, H., Jitsuno, T., Kanabe, M., Mima, K., Miyanaga, N, Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norreys, P.A., Setsuhara, Y., Takagi, M., Yamanaka, M., & Yamanaka, C. (1991). High-density compression experiments at ILE, Osaka. Laser and Part. Beams 9, 167208.Google Scholar
Badziak, J., Kozlov, A.A., Makowski, J., Parys., P., Ryc, L., Wolowski, J., Woryna, E. & Vankov A..B. (1999). Investigation of ion stgreams emitted from plasma produced with a high-power picosecond laser. Laser and Part. Beams 17, 323329.Google Scholar
Badziak, J., Hora, H., Woryna, S., Jablonski, S., Laska, L., Parys, P., Rohlena, K. & Wolowski, J. (2003). Experimental Evidence of Differnences in Properties of Fast Ion Fluxes form short-pulse and long-pulse Laser-Plasma Interaction. Phys. Lett. A 315, 452457.Google Scholar
Bagge, F. & Hora, H. (1974). Calculation of the Reduced Penetration Depth of Relativistic Electrons in Plasmas for Nuclear Fusion, Atomkernenergie 24, 143144.Google Scholar
Batchelor, M.T. & Stening, R.J. (1985). Collisionless absorption of femtosecond laser pulses in plasmas by nonlinear forces. Laser and Part. Beams 3, 189196.Google Scholar
Bobin, J.L. (1971). Flame Propagation and Overdense Heating in Laser Created Plasma. Phys. Fluids 14, 2341.Google Scholar
Brueckner, K.A. & Jorna, S. (1974). Laser Driven Fusion. Rev. Mod. Physics 46, 325367.Google Scholar
Campbell, E.M., Baldwin, D. & Blue, N. (2000). Congratulation message for Professor Chiyoe Yamanaka, Light and Shade: Festschrift to the 77th Birthday of Chiyoe Yamanaka, (ILE, Osaka University) p. 470472.
Cang, Yu et al. (2004). Plasma Phys. 70.
Chu, M.S. (1972). Thermonuclear Reaction Waves at High Densities. Phys. Fluids 15, 413422.Google Scholar
Clark, F.L., Krushelnik, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A., Dangor, A.E. (2001). Energetic heavy ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Letters 85, 16551657.Google Scholar
Eliezer, S. & Hora, H. (1989). Double Layers in Laser-Produced Plasmas. Physics Reports 172, 339406.Google Scholar
Fisch, N.J., Fowler, T.K., Frieman, E.A. & Goldstone. (2004). Obituuary Harald Furth. Physics Today 57 (No. 2), 7677.Google Scholar
Gabor, D. (1953). Collective model for particle interaction in plasmas. Proc. Royal Soc. London A 213, 7392.Google Scholar
Goldsworthy, M.P., Green, F. & Hora, H. (1987). A New Hydrodynamic Analysis of Double Layers. Laser and Part. Beams 5, 269286.Google Scholar
Grieger, G. & Wendelstein VII Team (1981). Measurements at the Wendelstein stellarator. Plasma Physics and Controlled Nuclear Fusion Research 1980 Vol. I, pp. 173–179 and pp. 185–192 Vienna: IAEA.
Häuser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted in a plasma by relativistic self-focusing of laser beams. Physical Review A 45, 12781281.Google Scholar
Hoang, G.T. & Jacquinot, J. (2004). Fusion energy from tokamaks. Physics World 17 (No.2). 2126.Google Scholar
Hora, H. (1975). Theory of Relativistic Self-Focusing of Laser Radiation in Plasmas. Journal Opt. Soc. Amer. 65, 882886.Google Scholar
Hora, H. (1981). Quantum Properties of Collisions in Plasmas at High Temperatures. Nuovo Cimento 64B, 18.Google Scholar
Hora, H. (1983). Interpenetration Burn for Controlled Inertial Confinement Fusion Driven by Nonlinear Laser Forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1987). Encyclopedia of Physical Science and Technology Vol. 7, p. 99: San Diego: Academic Press [2nd ed. 1992, Vol. 8 p. 433].
Hora, H. (1991). Plasmas at High Temperature and Density Heidelber: Springer [paperback: S. Roderer, Regensburg 2000].
Hora, H. (2000). Laser Plasma Physics, Forces and the Nonlinearity Principle Bellingham WA: SPIE Press.
Hora, H. (2002). Fusion Reactor with Petawatt Laser (in German) German Patent Application 1033 08 515.3 (28.2.2002, declassified, 5. Sept. 2002).
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czechoslovak Journal of Physics 53, 199217.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased Nuclear Fusion Yields of Inertially Confined DT Plasma due to Reheat. Zeitschrift f. Naturforschung 33A, 890894.Google Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nisihara, K., Takabe. K., Yamanaka, M., &Yamanaka, C. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Physics 60, 743760.Google Scholar
Hora, H., Heolss, M., Scheid, W., Wang, J.X., HO, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser and Particle Beams. 135144.Google Scholar
Hora, H. & Wang, L. (2001). comments on measurements by J. Zhang et al.. Summit Meeting on Plasma Physics, Febr., Islamabad.
Hora, H., Badziak, J., Boody, F., Höpfl R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, K., Rohlena, J., Skala, J., Ullschmied, J., Wolowski, J., &Woryna, E. (2002). Effects of ps and ns. laser pulses for giant ion source. Optics Communications. 207, 333338.Google Scholar
Hora, H., Osman, F., Höpfl, R., Badziak, J., Parys, P., Wolowski, J., Woryna, W., Boody, F., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2002a). Skin depth Theory explaining anomalous picosecond laser plasma interaction. Czechoslovak J. Physics 52, Suppl. D, D349D361, CD July.Google Scholar
Hora, H., Peng, H., Zhang., W. & Osman, F. (2002b). New Skin Depth Interaction by ps-TW Laser Pulses and Consequences for Fusion Energy. High Power Laser and Applications (Dianyuan Fan, Keith A. Truesdell, and Koji Yasui Eds.) SPIE Proceedings 5228, 3748.Google Scholar
Hora, H., Osman, F., Castillo, R., Collinds, R., Stait-Gardener, T., Chan, W.-K., Hoelss, M., Scheid, W., Wang J.-X., &Ho, Y.K. (2002c). Laser-generated pair production and Hawking-Unruh Radiation. Laser and Particle Beams 20, 7986.Google Scholar
Hora, H., Miley, G.H., Toujps, P., Evans, P., Osman, F., Castillo, R., Mima., K., Murakami, M., Nakai, S., Nishihara, K., Yamanaka, C. & Yamanaka, T. (2003). Single Event High Compression Inertial Confinement Fusion at Low Temperatures Compared with the Two Step Fast Ignitor. J. Plasma Physics 69, 413430.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Pfeifer, M., Skala, J. & Ullschmied, J. (2003a). Skin Depth Theory for Nonlinear-Force Driven Block Ignition Laser-ICF Based on Anomalous Picosecond Terawatt Laser Plasma Interaction, Eurpean Conference on Laser Interaction with Matter ECLIM, Mosocw 2002, (O.N. Krokhin S.Y. Guskov. & Y.A. Merkujlev eds). SPIE Proceedings 5228, 295305.Google Scholar
Hora, H., Cang. Y., He, X., Zhang, J., Osman, F., Badziak, J., Boody, F.P., Gammino, S., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L, Liu, H., Miley, G.H., Parys, P., Peng, H., Pfeiffer M., Rohlane, K., Skala, J. Skladanowski, L., Torrisi, L., Ullschmied, J., Wolowski, J., &Zhang, W.Y. (2004). Generation of Nonlinear Force Driven Blocks from Skin Layer Interaction of Petawatt-Picosecond Laser Pulses for ICF. Plasma Science and Technology. 6 (No.1) 21722187.Google Scholar
Jones, D.A., Kane, E.L., Lalousis, P, Wiles, P.R. & Hora, H. (1982). Density Modification and Energetic Ion Production at Relativistic Self-Focussing of Laser Beams in Plasmas. Phys. Fluids 25, 22952302.Google Scholar
Kalashnikov, M.P., Nickles, P.V., Schlegel, T., Schnürer, M., Billhardt F., Will, I., &Snyders, W. (1994). Dynamics of Laser-Plasma Interaction at 1018 W/cm2. Phys. Rev. Letters 73, 260263.Google Scholar
Kerns, J.R., Rogers, C.W. & Clark, J.G. (1972). Megaampere electron beam penetration in CD2. Bull. Am. Phys. Soc. 17, 692.Google Scholar
Kishony, R. & Shvarts, D. (2001). Rayleigh-Taylor Instabilities at Laser Compression of Plasma. Physics of Plasma 8, 49254931.Google Scholar
Kodama, & Fast Ignitor Consortium (2002). Fast heating scalable to laser fusion ignition. Nature 418, 933943.Google Scholar
Laska, L., Jungwirth, K., Kralikowa, B., Kraska, J., Pfeifer, .M., Rohlena, K., Skala, J., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Gammino, S., Torrisi, L., Boody, F.B. & Hora, H. (2003). Generation of multiply charged ions at low and high laser-power densities. Plasma Physics and Controlled fusion, 45, 585599.Google Scholar
Ledingham, K.W.D., Specer, I., McCanny, T, Singhal, R.P., Santala, M.I.K., Clark, E., Watts, I., Beg, F.N., Zepf, M., Krushelnik, K., Tatarakis, M., Dangor, A.E., Norreys, P.A., Allott, R., Neely, D., Clark, R.J., Machacek, A.C., Wark, J.S., Cresswell, A.J., Sanderson, D.C.W. & Magill, J. (2000). Photonuclear Physics when a Multiterawatt Laser Pulse Interacts with Solid Targets. Phys. Rev. Letters 84, 899902.Google Scholar
Lindl, J. (1994). Laser fusion by indirect drive. Physics of Plasmas 1, 342.Google Scholar
Magill, I., Schwoerer, H., Ewald, F., Galy, F., Schenkel, R. & Sauerbrey, R. (2003). Terawatt Laser Pulses for Transmutation of Long Lived Nuclear Waste. Appl. Phys. B 77, 387392.Google Scholar
Maisonier, C. (1994). Magnetic Confinement Fusion with Tokamaks. Europhysics News 25, 167168.Google Scholar
Marshak, R.E. (1941). Wave Mechanical Scattering at Particle Collisions. Ann. New York Acad. Sci. 41, 4961.Google Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense Lasers and Their Applications. Inertial Fusion Science and Applications 2001, (K.A. Tanaka, D.D. Meyerhofer and J. Meyer-ter-Vehn eds.) pp. 831839, Paris: Elsevier.
Nuckolls, J.L. (1992). Edward Teller Medal: Acceptance Remarks. Laser Interaction and Related Plasma Phenomena, (G.H. Miley and H. Hora Eds.) Vol. 10, pp. 2324. New York: Plenum.
Oliphant, Sir M. (1972). Rutherford: Recollections of his Cambridge Days p. 144. Amsterdam: Elsevier.
Oliphant, M.L.E., Harteck, P. & Lord Rutherford, (1934). 100 kilovolt discharges in deuterium plasmas. Proc. Roy. Soc. London A 144, 692714.Google Scholar
Osman, F., Hora, H., Cang, Y., Evans, P., Cao, L.H., Liu, H., He, X.T., Badziak, J., Parys, A.B., Woloski, J., Woryna, E., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Pferfer, M., Rohlena, K., Skala, J. & Ullschmied, J. (in print). Laser and Particle Beams.
Pellat, R. (2002). Inertial Fusion Science and Applications 2001, K.A. Tanaka, D.D. Meyerhofer, J. Meyer-ter-Vehn eds., p. 17. Elsevier: Paris.
Perry, M.V. & Mourou, G. (1994). Science 264, 917922.
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativisitc Magnetic Self-Channeling of Light in Near-Critical Plasma: Three-Dimensional Particle-in-Cell Simulation. Phys. Rev. Letters 76, 39753978.Google Scholar
Ray, P.S. & Hora, H. (1977). On the Thermalization of Energetic Charged Particles in Fusion Plasma with Quantum Electrodynamic Considerations. Zeitschrift f. Naturforschung 31, 538543.Google Scholar
Roth, M., Cowan, T.E., Hunt, A.W., Johnson, J., Broen, S.P., Fountain, W., Hatchett, S.P., Henry, E.A., Key, M.H., Kuehl, T., Parnell, T., Pennington, D.W., Perry., M.D., Sangster, T.C., Christi, M., Singh, M., Snavely, R., Stoyer, M., Takahashi, &Wilks, S.C. (2000). High-energy Electron, Positron, Ion and Nuclear Spectroscopy in Ultra-Intense Laser-Solid Experiments on the Petawatt. Inertial Fusion Science and Applications 1999, (C. Labaune, W.J. Hogan & K.A. Tanaka eds.) pp. 10101015. Paris: Elsevier.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.W., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M..D. & Powell, H. (2001). Fast Ignition by Intense LaserAccelerated Proton Beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Sakharov, A.D. (1982). Collected Scientific Works, p. 4, Basel: Marcel Dekker [see Laser and Particle Beams 163 (1987)].
Sauerbrey, R. (1996). Acceleration in femtosecond laser produced plasmas. Physics. of Plasma 3, 47124716.Google Scholar
Schmutzer, E. & Wilhelmi, B. (1977). Generation of Electric and Diffusion Currents (Magnetic Fields) in Arbitrary Moving Media by Electromagnetic Radiation. Plasma Physics 19, 799809.Google Scholar
Shank, C.V. (1985). private communication, Baltimore.
Spitzer, L. Jr. (1957). Physics of Fully Ionised Plasmas, New York: John Wiley.
Tabak, M., Glinsky, M.N., Krue, W.L., Wilks, S.C., Woodworth J., Campbell, E.M., Perry, M.D., &Mason, R.J. (1994). Ignition and High-Gain with Ultrapowerful Lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tanaka, K.A., Meyerhofer, D.D. & Meyer-ter-Vehn, J. (2001). Inertial Fusion Science and Applications 2001 Paris: Elsevier.
Tarter, C.B. (2002). Inertial Fusion and High-Energy-Density Science in the United States. Inertial Fusion Science and Applications 2001, (K.A. Tanaka, D.D. Meyerhofer, & J. Meyer-ter-Vehn eds.) pp. 916. Paris: Elsevier.
Teller, E. (2001). Memoirs. Cambridge, MA: Perseus Publishers.
Teubner, U., Bergmann, B., Van Wontergehm, B., Schäfer, F.P. & Sauerbrey, R. (1993). Angle dependent x-ray emission and resonance-absorption in a laser produced plasma generated by a high-intensity ultrashort pulse. Phys. Rev. Lett. 70, 794797.Google Scholar
Umstadter, R. (1996). Terawatt Lasers Produce Faster Electron Acceleration. Laser Focus 32 (No. 2) 101107.Google Scholar
Wobig, H. (2002). The Wendelstein VIIX Stellarator. Current Trends in International Fusion Research, Proceedings of the third Symposium 2000, (E. Panaralla Ed.), 563578. Ottawa: National Research Council.
Wolowski, J., Badziak, J., Boody., Gammino, S., Hora, H., Jungwirth, K., Kaska, J., Laska, L., Parys, P., Pfeifer, M., Rohlena, K., Szydlowski, A., Torris, L., Ullschmied, J., &Woryna, E. (2003). Characteristics of ion emission from plasma produced by high-energy short-wavelength (438 nm) laser radiation, Plasma Physics and Controlled Fusion 45, 10871093.Google Scholar
Yonas, G. (1978). Fusion Power with Particle Beams. Scientific Amer. 239, (No. 5), 4051.Google Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, L., Li, Z.L., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-Ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E57, 37463752.Google Scholar