Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T04:14:55.768Z Has data issue: false hasContentIssue false

Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma

Published online by Cambridge University Press:  09 July 2013

Prateek Varshney
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida, UP, India
Vivek Sajal*
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida, UP, India
K.P. Singh
Affiliation:
Singh Simtech Pvt. Ltd., Bartapur, Rajasthan, India
Ravindra Kumar
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida, UP, India
Navneet K. Sharma
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida, UP, India
*
Address correspondence and reprint requests to: Vivek Sajal, Department of Physics & Materials Science & Engineering, Jaypee Institute of Information Technology, Noida, UP, India-201307. E-mail: vsajal@rediffmail.com

Abstract

A scheme of terahertz radiation generation is proposed by beating of two extra-ordinary lasers having frequencies and wave numbers $\lpar {\rm \omega}_1\comma \; \vec k_1 \rpar $ and $\lpar {\rm \omega}_2\comma \; \vec k_2 \rpar $, respectively in a magnetized plasma. Terahertz wave is resonantly excited at frequency $\lpar {\rm \omega}_1 - {\rm \omega}_2 \rpar $ and wave number (k1 − k2 + q) with a wave number mismatch factor q which is introduced by the periodicity of plasma density ripples. In this process, the lasers exert a beat ponderomotive force on plasma electrons and impart them an oscillatory velocity with both transverse and longitudinal components in the presence of transverse static magnetic field. The oscillatory velocity couples with density ripples and produces a nonlinear current that resonantly excites the terahertz radiation. Effects of periodicity of density ripples and applied magnetic field are analyzed for strong THz radiation generation. The terahertz radiation generation efficiency is found to be directly proportional to the square of density ripple amplitude and rises with the magnetic field strength. With the optimization of these parameters, the efficiency ~10−3 is achieved in the present scheme. The frequency and power of generated THz radiation can be better tuned with the help of parameters like density ripple amplitude, periodicity and applied magnetic field strength in the present scheme.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonsen, T.M., Palastra, J.J. & Milchberg, H.M. (2007). Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14, 033107.CrossRefGoogle Scholar
Beard, M.C., Turner, G.M. & Schmuttenmar, C.A. (2002). Terahertz spectroscopy. J. Phys. Chem. B 106, 7146.CrossRefGoogle Scholar
Bhasin, L. & Tripathi, V.K. (2009). Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasma 16, 103105.CrossRefGoogle Scholar
Dua, H.W., Chena, M., Shenga, Z.M. & Zhanga, J. (2011). Numerical studies on terahertz radiation generated from two-color laser pulse interaction with gas targets. Laser Part. Beams 29, 447.Google Scholar
Ghorbanalilu, M. (2012). Second and third harmonics generations in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291.CrossRefGoogle Scholar
Gildenburg, V.B. & Vvedenskii, N.V. (2007). Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process. Phys. Rev. Lett. 98, 245002.CrossRefGoogle ScholarPubMed
Hamster, H., Sullivan, A., Gordon, S. & Falcone, R.W. (1994). Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671.CrossRefGoogle ScholarPubMed
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725.CrossRefGoogle ScholarPubMed
Hu, G.Y., Shen, B., Lei, A., Li, R. & Xu, Z. (2010). Transition Cherenkov radiation of terahertz generated by superluminous ionization front in femtosecond laser filament. Laser Part. Beams 28, 399.CrossRefGoogle Scholar
Kim, K.Y., Taylor, A.J., Glownia, T.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 153, 1.Google Scholar
Kuo, C.C., Pai, H., Lin, M.W., Lee, K.H., Lin, J.Y., Wang, J. & Chen, S.Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901.CrossRefGoogle ScholarPubMed
Kumar, P., Kumar, M. & Tripathi, V.K. (2010). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. J. Appl. Physics 108, 123303.Google Scholar
Layer, B.D., York, A., Antonsen, T.M., Varma, S., Chen, Y.H., Leng, Y. & Milchberg, H.M. (2007). Ultrahigh intensity optical slow-wave structure. Phys. Rev. Lett. 99, 035001.CrossRefGoogle ScholarPubMed
Liu, C.S. & Tripathi, V.K. (2009). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder J. Appl. Phy. 105, 013313.Google Scholar
Malik, A.K., Malik, H.K. & Nishida, Y. (2011). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. Phys. Letts. A 375, 1191.Google Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2011). Strong terahertz radiation by beating of spatial-triangular lasers in a plasma. Appl. Phys. Letts. 99, 071107.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2012). Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phy. Rev. E 85, 016401.CrossRefGoogle ScholarPubMed
Paknezhad, A. & Dorranian, D. (2011). Nonlinear backward Raman Scattering in the short laser pulse interaction with a cold under dense transversely magnetized plasma. Laser Part. Beams 29, 373.CrossRefGoogle Scholar
Pathak, V.B., Dahiya, D. & Tripathi, V.K. (2009). Coherent terahertz radiation from interaction of electron beam with rippled density plasma. J. Appl. Phys. 105, 013315.CrossRefGoogle Scholar
Pickwell, E. & Wallace, V.P. (2006). Biomedical applications of terahertz technology. J. Phys. D 39, R301.CrossRefGoogle Scholar
Rothwell, E.J. & Cloud, M.J., Electromagnetic, Second ed., CRC Press, Taylor and Francis Group, 2009, p. 211.Google Scholar
Sharma, R.P., Monika, M., Sharma, P., Chauhan, P. & Jia, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28, 531537.CrossRefGoogle Scholar
Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R., & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116.CrossRefGoogle Scholar
Tripathi, D., Bhasin, L., Uma, R. & Tripathi, V.K. (2010). Terahertz generation by an amplitude-modulated Gaussian laser beam in a rippled density plasma column. Phys. Scr. 82, 035504.CrossRefGoogle Scholar
Tripathi, V.K. & Liu, C.S. (1990). Plasma effects in a free electron laser. IEEE Trans. Plasma Sci. 18, 466.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009). Laser second harmonic generation in a rippled density plasma in the presence of azimuthal magnetic field. Laser Part. Beams 27, 719.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011). Nonlinear elecctromagnetic Eigen modes of a self created magnetized palsm channel and its stimulaed Raman scattering. Laser Part. Beams 29, 471.CrossRefGoogle Scholar
Wu, H.C., Sheng, Z.M. & Zhang, J. (2008). Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator. Phys. Rev. E 77, 046405.Google ScholarPubMed
Zhong, H., Redo-Sanchez, A. & Zhang, X.C. (2006). Identification and classification of chemicals using terahertz reflective spectroscopic focalplane imaging system. Opt. Express 14, 9130.CrossRefGoogle ScholarPubMed