Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-08T00:20:09.135Z Has data issue: false hasContentIssue false

Milankovitch and albedo forcing of the tropical monsoons: a comparison of geological evidence and numerical simulations for 9000 yBP

Published online by Cambridge University Press:  03 November 2011

F. A. Street-Perrott
Affiliation:
Tropical Palaeoenvironments Research Group, Environmental Change Unit, School of Geography, Mansfield Rd, Oxford OX1 3TB.
J. F. B. Mitchell
Affiliation:
Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berkshire RG12 2SZ.
D. S. Marchand
Affiliation:
Tropical Palaeoenvironments Research Group, School of Geography, Mansfield Rd, Oxford OX1 3TB.
J. S. Brunner
Affiliation:
Centre for Remote Sensing, The Blackett Laboratory, Imperial College of Science, Technology and Medicine London SW7 2BZ, UK.

Abstract

Lake-level and palaeoecological evidence from Africa, Arabia and southern Asia for 9000 yBP suggests an intensification and increased poleward penetration of the northern monsoons. The vegetation belts shifted north by 4–6° latitude on the south side of the Sahara. In contrast, the monsoon over southern Africa was weaker than today. Calculations based on the new palaeogeographical map of Mali by Petit-Maire et al. (1988) indicated that the areaaveraged surface albedo decreased by 0·10–0·14 in the zone 16–24°N and that total annual precipitation increased by 150–320 mm north of the inland delta of the Niger (20–24° 15′N). Experiments with atmospheric general-circulation models suggest that this asymmetrical pattern of anomalies in the strength of the tropical monsoons can be explained in broad terms by the different orbital configuration of the Earth at 9000 yBP. Here, we describe a hitherto unpublished sensitivity experiment with the low-resolution (5° × 7·5°) version of the U.K. Meteorological Office 11-layer model, in which the albedo over Africa and Arabia between 15 and 30°N was reduced by between 0·04 and 0·06 to simulate the increase in vegetation cover at 9000 yBP. The results indicate that the surface-albedo change provides a significant positive feedback enhancing the direct climatic effects of Milankovitch forcing in the tropics.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgartner, A. & Reichel, E. 1975. The World Water Balance. Mean Annual Global, Continental, and Maritime Precipitation, Evaporation and Runoff. Amsterdam: Elsevier.Google Scholar
Baumhauer, R. & Schulz, E. 1984. The Holocene lake of Seguidine, Kaoar, NE Niger. PALAEOECOL AFR 16, 283–90.Google Scholar
Becker, F., Bolle, H.-J. & Rowntree, P. R. 1987. The International Satellite Land-Surface Climatology Project. ISLSCP REPT 10. Berlin: ISLSCP Secretariat.Google Scholar
Bernard, E. A. 1962. Théorie astronomique des pluviaux et interpluviaux du Quaternaire africain. ACAD ROY SCI OUTRE-MER (BRUSSELS), CLASSE SCI. TECH., MEM. EN1, 232 pp.Google Scholar
Bishop, W. W. 1971. The Late Cenozoic history of East Africa in relation to hominoid evolution. In Turekian, K. K. (ed.) The Late Cenozoic Glacial Ages, pp. 493527. New Haven: Yale University Press.Google Scholar
Boyle, E. A. & Keigwin, L. 1987. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. NATURE 330, 3540.Google Scholar
Brookes, I. A. 1989. Early Holocene basinal sediments of the Dakhleh Oasis region, south central Egypt. QUATERN RES 32, 139–52.CrossRefGoogle Scholar
Burney, D. A. 1987. Pre-settlement vegetation changes at Lake Tritivakely, Madagascar. PALAEOECOL AFR 18, 357–81.Google Scholar
Butzer, K. W., Isaac, G. Li., Richardson, J. L. & Washbourn-Kamau, C. (1972). Radiocarbon dating of East African lake levels. SCIENCE 175, 1069–76.CrossRefGoogle ScholarPubMed
Cohmap Members 1988. Climatic changes of the last 18,000 years: Observations and model simulations. SCIENCE 241, 1043–52.CrossRefGoogle Scholar
Cour, P. & Duzer, D. (1976). Persistance d'un climat hyperaride au Sahara central et méridional au cours de l'Holocène. REV GEOGR PHYS GEOL DYN sér 2, 18, 175–98.Google Scholar
Courel, M-F. 1985. Etude de l'Evolution récente des Milieux sahéliens à partir des Mesures fournies par les Satellites. THESE D'ETAT. Paris: Universite de Paris-I.Google Scholar
Courel, M-F., Kandel, R. S. & Rasool, S. I. 1984. Surface albedo and the Sahel drought. NATURE 307, 528–31.CrossRefGoogle Scholar
Currie, D. J. & Paquin, V. 1987. Large-scale biogeographical patterns of species richness of trees. NATURE 329, 326–27.CrossRefGoogle Scholar
Fabre, J. & Petit-Maire, N. 1988. Holocene climatic evolution at 22–23°N from two palaeolakes in the Taoudenni area (northern Mali). PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 65, 133–48.Google Scholar
Faure, H. 1969. Lacs quaternaires du Sahara. MITT INT VEREIN LIMNOL 17, 131–46.Google Scholar
Gasse, F., Fontes, J. C., Plaziat, J. C., Carbonel, P., Kaczmarska, I., De Deckker, P., Soulié-Marsche, I., Callot, Y. & Dupeuble, P. A. 1987. Biological remains, goechemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 60, 146.CrossRefGoogle Scholar
Gautier, A. 1984. New data concerning the prehistoric fauna and domestic cattle from Ti-N-Torha (Acacus, Libya). PALAEOECOL AFR 16, 305–9.Google Scholar
Grove, A. T. & Goudie, A. S. 1971. Late Quaternary lake levels in the Rift Valley of Ethiopia and elsewhere in tropical Africa. NATURE 234, 403–5.CrossRefGoogle Scholar
Hastenrath, S. & Kutzbach, J. E. 1983. Paleoclimatic estimates from water and energy budgets of East African lakes. QUATERN RES 19, 141–53.CrossRefGoogle Scholar
Hillaire-Marcel, C., Riser, J., Rognon, P., Petit-Maire, N., Rosso, J. C. & Soulié-Märsche, I. 1983. Radiocarbon chronology of Holocene hydrologic changes in northeastern Mali. QUATERN RES 20, 145–64.CrossRefGoogle Scholar
Holdship, S. A. 1976. The palaeolimnology of Lake Manyara, Tanzania: A diatom analysis of a 56 meter sediment core. Unpublished Ph.D. Dissertation. Durham, North Carolina: Duke University.Google Scholar
Kutzbach, J. E. 1980. Estimates of past climate at Paleolake Chad, North Africa, based on a hydrological and energy-balance model. QUATERN RES 14, 210–23.CrossRefGoogle Scholar
Kutzbach, J. E. 1981. Monsoon climate of the early Holocene: Climatic experiment using the Earth's orbital parameters for 9000 years ago. SCIENCE 214, 5961.CrossRefGoogle ScholarPubMed
Kutzbach, J. E. 1983. Monsoon rains of the Late Pleistocene and Early Holocene: Patterns, intensity and possible causes of changes. In Street-Perrott, F. A., Beran, M. A. & Ratcliffe, M. A. (eds), Variations in the Global Water Budget, pp. 371–89. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Kutzbach, J. E. & Gallimore, R. G. 1988. Sensitivity of a coupled atmosphere/mixed-layer ocean model to changes in orbital forcing at 9000 yBP. J GEOPHYS RES 93, 803–21.CrossRefGoogle Scholar
Kutzbach, J. E. & Guetter, P. J. 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. J ATMOS SCI 43, 1726–59.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J. E. & Otto-Bliesner, B. 1982. The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J ATMOS SCI 39, 1177–88.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J. E. & Street-Perrott, F. A. 1985. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. NATURE 317, 130–34.CrossRefGoogle Scholar
Kutzbach, J. E., Ruddiman, W. F., Street-Perrott, F. A., Webb, T. III and Wright, H. E. Jr (eds) in press. Global Climates 9000 and 6000 Years Ago in the Perspective of Glacial/Interglacial Climate Change. Minneapolis: University of Minnesota Press.Google Scholar
Lamb, P. J. 1985. Rainfall in Subsaharan West African during 1941–1983. Z GLETSCHERK GLAZIALGEOL 21, 131139.Google Scholar
Laseski, R. A. 1983. Modern Pollen Data and Holocene Climate Change in East Africa. Unpublished Ph.D. Dissertation. Providence: Brown University.Google Scholar
Lézine, A.-M. 1988. Les variations de la couverture forestière mésophile d'Afrique occidentale au cours de l'Holocène. C R ACAD SCI PARIS 307, (ser. II) 439–45.Google Scholar
Lézine, A.-M. 1989. Late Quaternary vegetation and climate of the Sahel. QUATERN RES 32, 317–34.Google Scholar
Lézine, A.-M. & Casanova, J. 1989. Pollen and hydrological evidence for the interpretation of past climates in tropical West Africa. QUATERN SCI REV 8, 4555.CrossRefGoogle Scholar
Lézine, A.-M., Casanova, J. & Hillaire-Marcel, C. 1990. Across an early Holocene humid phase in western Sahara: Pollen and isotope stratigraphy. GEOLOGY 18, 264–67.2.3.CO;2>CrossRefGoogle Scholar
Lieth, H. 1975. Modeling the primary productivity of the world. In Lieth, H. & Whittaker, R. H. (eds) Primary Productivity of the Biosphere, pp. 237–63. Berlin: Springer-Verlag.Google Scholar
Maley, J. 1983. Histoire de la végétation et du climat de l'Afrique nord-tropicale au Quaternaire récent. BOTHALIA 14, 377–89.Google Scholar
Manabe, S. 1969. Climate and the ocean circulation, I, The atmospheric circulation and the hydrology of the Earth's surface. MON WEATH REV 97, 739–74.Google Scholar
Manson, I., Rapley, C. G., Guzkowska, M. & Street-Perrott, F. A. 1985. ERS-1 observations on lakes for climate research. In Proceedings of the EARSeL/ESA Symposium on European Remote Sensing Opportunities, Strasbourg, 31 March-3 April 1985, 235–41 (ESA SP-233). European Space Agency: Paris.Google Scholar
Menenti, M. 1984. Physical Aspects and Determination of Evaporation in Deserts Applying Remote Sensing Techniques. REPT 10, 175 pp. Wageningen: Institute for Land and Water Management Research.Google Scholar
Mintz, Y. 1984. The sensitivity of numerically simulated climates to land-surface boundary conditions. In Houghton, J. T. (ed) The Global Climate, pp. 79105. Cambridge: Cambridge University Press.Google Scholar
Mitchell, J. F. B. in press. Greenhouse warming: Is the Holocene a good analogue? J CLIMATE.Google Scholar
Mitchell, J. F. B., Grahame, N. S. & Needham, K. J. 1988. Climate simulations for 9000 years before present: Seasonal variations and effect of the Laurentide ice sheet. J GEOPHYS RES 93, 8283–303.CrossRefGoogle Scholar
Nicholson, S. E. & Flohn, H. 1980. African environmental and climatic changes and the general atmospheric circulation in late Pleistocene and Holocene. CLIM CH 2, 313–48.CrossRefGoogle Scholar
Norton, C. C., Mosher, F. R. & Hinton, B. 1979. An investigation of surface albedo variations during the recent Sahel drought. J APPL MET 18, 1252–62.2.0.CO;2>CrossRefGoogle Scholar
Pachur, H.-J. & Kröpelin, S. 1987. Wadi Howar: Paleoclimatic evidence from an extinct river system in the southeastern Sahara. SCIENCE 237, 298300.CrossRefGoogle ScholarPubMed
Pachur, H.-J. & Röper, H.-P. 1984. The Libyan (Western) Desert and northern Sudan during the Late Pleistocene and Holocene. BERLINER GEOWISS ABH A50, 249–84.Google Scholar
Petit-Maire, N. 1986. Palaeoclimates in the Sahara of Mali. A multidisciplinary study. EPISODES 9, 716.Google Scholar
Petit-Maire, N. 1989. Interglacial environments in presently hyperarid Sahara: Palaeoclimatic implications. In Leinen, M. and Sarnthein, M. (eds) Paleoclimalology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport, 637–61. Dordrecht: Kluwer.CrossRefGoogle Scholar
Petit-Maire, N., Fabre, J., Carbonel, P., Schulz, E. and Aucour, A.-M. 1987. La dépression de Taoudenni (Sahara malien) à l'Holocène. GEODYNAMIQUE 2, 127–60.Google Scholar
Petit-Maire, N. & Gayet, M. 1984. Hydrographie du Niger (Mali) à l'Holocène ancien. C R ACAD SCI PARIS 298, 21–3.Google Scholar
Petit-Maire, N. & Riser, J. 1981. Holocene lake deposits and environments in northeastern Mali. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 35, 4561.Google Scholar
Petit-Maire, N. & Riser, J. (eds) 1983. Sahara ou Sahel? Marseille: Lamy.Google Scholar
Petit-Maire, N. & Riser, J. 1987. Holocene palaeohydrography of the Niger. PALAEOECOL AFR 18, 135141.Google Scholar
Petit-Maire, N. et al. 1988 Le Sahara à l'Holocène: Mali 1:1,000,000. CCGM. Paris: Institut Géographique National.Google Scholar
Pinty, B. & Szejwach, G. 1985. A new technique for inferring surface albedo from satellite observations. J CLIM APPL METEOROL 24, 741–50.2.0.CO;2>CrossRefGoogle Scholar
Pitcher, E. J., Malone, R. C., Ramanathan, V., Blackmon, M. L., Puri, K. & Bourke, W. 1983. January and July simulations with a spectral general circulation model. J ATMOS SCI 40, 580604.2.0.CO;2>CrossRefGoogle Scholar
Prell, W. 1984. Variation of monsoonal upwelling: A response to changing solar radiation. In Hansen, J. E. & Takahashi, T. (eds) Climate Processes and Climate Sensitivity, pp. 4857. GEOPHYS MONOGR 29. Washington, DC.: AGoogle Scholar
Prell, W. & Van Campo, E. 1986. Coherent response of Arabian Sea upwelling and pollen transport to late Quaternary monsoonal winds. NATURE 323, 526–28.CrossRefGoogle Scholar
Ramanathan, V., Pitcher, E. J., Malone, R. C. & Blackmon, M. L. 1983. The response of a spectral general circulation model to refinements in radiative processes. J ATMOS SCI 40, 605–30.2.0.CO;2>CrossRefGoogle Scholar
Riser, J. & Petit-Maire, N. 1986. Paléohydrographie du bassin d'Araouane à l'Holocène. REV GEOL DYN GEOGR PHYS 27, 205–12.Google Scholar
Ritchie, J. C. & Haynes, C. V. 1987. Holocene vegetation zonation in the eastern Sahara. NATURE 330, 645–47.CrossRefGoogle Scholar
Ritchie, J. C., Eyles, C. H. & Haynes, C. V. 1985. Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. NATURE 314, 352–55.Google Scholar
Roberts, N. & Wright, H. E. Jr. in press. Southwest Asia. In Wright, H. E. Jr., Kutzbach, J. E., Ruddiman, W. F., Street-Perrott, F. A. & Webb, T. III, (eds) Global Climates 9000 and 6000 Years Ago in the Perspective of Glacial/Interglacial Climate Change. Minneapolis: University of Minnesota Press.Google Scholar
Rockwood, A. A. & Cox, S. K. 1978. Satellite inferred surface albedo over northwestern Africa. J ATMOS SCI 35, 513–22.2.0.CO;2>CrossRefGoogle Scholar
Rossignol-Strick, M. & Duzer, D. 1979. West African vegetation and climate since 22,500 BP from deep-sea cores palynology. POLL SPORES 21, 105–34.Google Scholar
Schulz, E. 1980. Zur Vegetation der östlichen zentralen Sahara und zu ihrer Entwicklung im Holozän. WURZB GEOGR ARB 51, 194 pp.Google Scholar
Schulz, E. 1987. Die holozäne Vegetation der zentralen Sahara (N-Mali, N-Niger, SW-Libyen). PALAEOECOL AFR 18, 143–59.Google Scholar
Scott, L. 1989. Climatic conditions in southern Africa since the last glacial maximum, inferred from pollen analysis. PALAEOGEOGR PALAEOCLIMATOL PALAEOECOL 70, 345–53.CrossRefGoogle Scholar
Slingo, A. 1985. Handbook of the Meteorological Office 11-layer atmospheric general circulation model. Volume 1: Model description. DYN CLIMATOL TECHN NOTE 29, 155 pp. Bracknell: U.K. Meteorological Office.Google Scholar
Street, F. A. 1979. Late Quaternary precipitation estimates for the Ziway-Shala, Basin. PALAEOECOL AFR 11, 135–43.Google Scholar
Street, F. A. & Grove, A. T. 1976. Environmental and climatic implications of late Quaternary lake-level fluctuations in Africa. NATURE 261, 385–90.Google Scholar
Street, F. A. & Grove, A. T. 1979. Global maps of lake-level fluctuations since 30,000 BP. QUATERN RES 12, 83118.CrossRefGoogle Scholar
Street-Perrott, F. A. & Harrison, S. P. 1984. Temporal variations in lake levels since 30,000 yr BP – An index of the global hydrological cycle. In Hansen, J. E. & Takahashi, T. (eds) Climate Processes and Climate Sensitivity, 118–29. GEOPHYS MONOGR 29.Google Scholar
Street-Perrott, F. A. & Harrison, S. P. 1985. Lake levels and climate reconstruction. In Hecht, A. D. (ed) Paleoclimate Analysis and Modeling, pp. 291340. New York: John Wiley.Google Scholar
Street-Perrott, F. A. & Roberts, N. 1983. Fluctuations in closed-basin lakes as an indicator of past atmospheric circulation patterns. In Street-Perrott, F. A., Beran, M. A. & Ratcliffe, R. A. S. (eds) Variations in the Global Water Budget, pp. 331–45. Dordrecht: D. Reidel.Google Scholar
Street-Perrott, F. A., Roberts, N. & Metcalfe, S. E. 1985. Geomorphic implications of Late Quaternary hydrological and climatic changes in the northern hemisphere tropics. In Douglas, I. & Spencer, T. (eds) Environmental Change and Tropical Geomorphology, pp. 165–83. London: George Allen and Unwin.Google Scholar
Street-Perrott, F. A., Marchand, D. S., Roberts, N. & Harrison, S. P. 1989. Global Lake-Level Variations from 18,000 to 0 Years Ago: A Palaeoclimatic Analysis. TECHN REPT TR046, 213 pp. Washington, D.C.: U.S. Department of Energy.CrossRefGoogle Scholar
Street-Perrott, F. A. & Perrott, R. A. in press. Africa. In Wright, H. E. Jr., Kutzbach, J. E., Ruddiman, W. F., Street-Perrott, F. A., & Webb, T. III, (eds) Global Climates 9000 and 6000 Years Ago in the Perspective of Glacial/Interglacial Climate Change. Minneapolis: University of Minnesota Press.Google Scholar
Swain, A. M., Kutzbach, J. E.Hastenrath, S. 1983. Estimates of Holocene precipitation for Rajasthan, India, based on pollen and lake-level data. QUATERN RES 19, 117.CrossRefGoogle Scholar
Talbot, M. R. 1980. Environmental responses to climatic change in the West African Sahel over the past 20,000 years. In Williams, M. A. J. & Faure, H. (eds) The Sahara and the Nile, pp. 3762. Rotterdam: A. A. Balkema.Google Scholar
Talbot, M. R. & Delibrias, G. 1977. Holocene variations in the level of Lake Bosumtwi, Ghana. NATURE 268, 722–24.CrossRefGoogle Scholar
Tetzlaff, G. and Adams, L. J. 1983. Present-day and early Holocene evaporation of Lake Chad. In Street-Perrott, F. A., Beran, M. A. & Ratcliffe, R. A. S. (eds) Variations in the Global Water Budget, pp. 347–60. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Toucheboeuf de Lussigny, P. 1969. Monographic hydrologique du Lac Chad. Paris: Office de la Recherche Scientifique et Technique d'Outre-Mer.Google Scholar
Wendler, G. & Eaton, F. 1983. On the desertification of the Sahel zone. Part I Ground observations. CLIM CH 5, 365–80.Google Scholar
White, F. 1983. The Vegetation of Africa. A Descriptive Memoir to Accompany the Unesco/AETFAT/UNSO Vegetation Map of Africa. UNESCO NAT RES RES 20, 356 pp. Paris: Unesco.Google Scholar
Wickens, G. E. 1975. Changes in the climate and vegetation of the Sudan since 20 000 B.P. BOISSIERA 24, 4365.Google Scholar
Wilson, C. A. & Mitchell, J. F. B. 1987. A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean. J GEOPHYS RES 92, 13, 315–43.Google Scholar
Wilson, M. F. & Henderson-Sellers, A. 1985. A global archive of land cover and soils data for use in general circulation climate models. J. CLIMATOL 5, 119–43.CrossRefGoogle Scholar