Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T08:32:07.266Z Has data issue: false hasContentIssue false

Hard to predict! No clear effects of home-field advantage on leaf litter decomposition in tropical heath vegetation

Published online by Cambridge University Press:  12 October 2022

Mery I. G. de Alencar*
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
André Y. S. P. Belo
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
José L. A. Silva
Affiliation:
Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
Ana E. B. Asato
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Eduarda F. Gomes
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Valéria S. de Oliveira
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Jesiel de O. Teixeira
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Otávio de S. Monte
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Adriano S. Mota
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Vitória M. L. Pereira
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Sibele S. Dantas
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Gabriel H. S. Silva
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Bruno T. Goto
Affiliation:
Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Alexandre F. Souza
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
Adriano Caliman
Affiliation:
Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil
*
Author for correspondence: Mery I. G. de Alencar, Email: merypynck@hotmail.com

Abstract

The home-field advantage (HFA) hypothesis establishes that plant litter decomposes faster at ‘home’ sites than in ‘away’ sites due to more specialized decomposers acting at home sites. This hypothesis has predominantly been tested through ‘yes or no’ transplanting experiments, where the litter decomposition of a focal species is quantified near and away from their conspecifics. Herein, we evaluated the occurrence and magnitude of home-field effects on the leaf litter decomposition of Myrcia ramuliflora (O.Berg) N. Silveira (Myrtaceae) along a natural gradient of conspecific litterfall input and also if home-field effects are affected by litter and soil traits. Litter decomposition of M. ramuliflora was assessed through litterbags placed in 39 plots in a tropical heath vegetation over a period of 12 months. We also characterized abiotic factors, litter layer traits, and litter diversity. Our results indicated the occurrence of positive (i.e. Home-field advantage) and negative (i.e. Home-field disadvantage) effects in more than half of the plots. Positive and negative effects occurred in a similar frequency and magnitude. Among all predictors tested, only the community weighted mean C/N ratio of the litterfall input was associated with home-field effects. Our results reinforce the lack of generality for home-field effects found in the literature and thus challenge the understanding of litter-decomposer interaction in tropical ecosystems.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology 94, 713724.CrossRefGoogle Scholar
Aerts, R and Chapin, FS III (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30, 167. Elsevier.CrossRefGoogle Scholar
Austin, AT, Vivanco, L, González-Arzac, A and Pérez, LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. The New Phytologist 204, 307314.CrossRefGoogle Scholar
Ayres, E, Dromph, KM and Bardgett, RD (2006) Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biology and Biochemistry 38, 183186.CrossRefGoogle Scholar
Ayres, E, Steltzer, H, Berg, S and Wall, DH (2009a) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. Journal of Ecology 97, 901912.CrossRefGoogle Scholar
Ayres, E, Steltzer, H, Simmons, BL, Simpson, RT, Steinweg, JM, Wallenstein, MD, Mellor, N, Parton, WJ, Moore, JC and Wall, DH (2009b) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry 41, 606610.CrossRefGoogle Scholar
Bachega, LR, Bouillet, J-P, de Cássia Piccolo, M, Saint-André, L, Bouvet, J-M, Nouvellon, Y, de Moraes Gonçalves, JL, Robin, A and Laclau, J-P (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. Forest Ecology and Management 359, 3343.CrossRefGoogle Scholar
Charnov, EL (1976) Optimal foraging, the marginal value theorem. Theoretical Population Biology 9, 129136.CrossRefGoogle ScholarPubMed
Close, DC and McArthur, C (2002) Rethinking the role of many plant phenolics – protection from photodamage not herbivores? Oikos 99, 166172. John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Coq, S, Souquet, J-M, Meudec, E, Cheynier, V and Hättenschwiler, S (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 20802091. John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Cruz-Rivera, E and Hay, ME (2000) The effects of diet mixing on consumer fitness: macroalgae, epiphytes, and animal matter as food for marine amphipods. Oecologia 123, 252264.CrossRefGoogle ScholarPubMed
EMBRAPA/CNPS. (1997) Manual de Métodos de Análise de Solos. Second edition. Rio de Janeiro, Brazil: EMBRAPA- CNPS.Google Scholar
Fassbender, HW (1973) Simultane P-Bestimmung in N-Kjeldahl-Ausfschlußvon Bodenproben. Die Phosphorsäure 30, 4453.Google Scholar
Freschet, GT, Aerts, R and Cornelissen, JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal of Ecology 100, 619630.CrossRefGoogle Scholar
Freschet, GT, Cornwell, WK, Wardle, DA, Elumeeva, TG, Liu, W, Jackson, BG, Onipchenko, VG, Soudzilovskaia, NA, Tao, J and Cornelissen, JHC (2013) Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. Journal of Ecology 101, 943952. John Wiley & Sons, Ltd.CrossRefGoogle Scholar
García-Palacios, P, Mckie, BG, Handa, IT, Frainer, A and Hättenschwiler, S (2016) The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology 30, 819–829.CrossRefGoogle Scholar
Gholz, HL, Wedin, DA, Smitherman, SM, Harmon, ME and Parton, WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6, 751765.CrossRefGoogle Scholar
Gießelmann, UC, Martins, KG, Brändle, M, Schädler, M, Marques, R and Brandl, R (2011) Lack of home-field advantage in the decomposition of leaf litter in the Atlantic Rainforest of Brazil. Applied Soil Ecology 49, 510.CrossRefGoogle Scholar
Hambäck, PA and Englund, G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecology Letters 8, 10571065. John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Hättenschwiler, S, Coq, S, Barantal, S and Handa, IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytologist 189, 950965. John Wiley & Sons, Ltd.CrossRefGoogle ScholarPubMed
Hättenschwiler, S and Jørgensen, HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98, 754763.CrossRefGoogle Scholar
John, MGSt, Orwin, KH and Dickie, IA (2011) No ‘home’ versus ‘away’ effects of decomposition found in a grassland–forest reciprocal litter transplant study. Soil Biology and Biochemistry 43, 14821489.CrossRefGoogle Scholar
Kalogirou, S (2020) lctools: Local Correlation, Spatial Inequalities, Geographically Weighted Regression and Other Tools.Google Scholar
Keiser, AD, Keiser, DA, Strickland, MS and Bradford, MA (2014) Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102, 603609.CrossRefGoogle Scholar
Keiser, AD, Strickland, MS, Fierer, N and Bradford, MA (2011) The effect of resource history on the functioning of soil microbial communities is maintained across time. Biogeosciences 8, 14771486.CrossRefGoogle Scholar
Kuzyakov, Y (2002) Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165, 382396. John Wiley & Sons, Ltd.3.0.CO;2-#>CrossRefGoogle Scholar
Kwon, T, Shibata, H, Kepfer-Rojas, S, Schmidt, IK, Larsen, KS, Beier, C, Berg, B, Verheyen, K, Lamarque, J-F, Hagedorn, F, Eisenhauer, N, Djukic, I, Network, Teacomposition, Kwon, T, Shibata, H, Kepfer-Rojas, S, Schmidt, IK, Larsen, KS, Beier, C, Berg, B, Verheyen, K, Lamarque, JF, Eisenhauer, N, Djukic, I, Caliman, A, Paquette, A, Gutiérrez-Girón, A, Petraglia, A, Augustaitis, A, Saillard, A, Ruiz-Fernández, AC, Sousa, AI, Lillebø, AI, Gripp, A da R, Lamprecht, A, Bohner, A, Francez, A-J, Malyshev, A, Andrić, A, Stanisci, A, Zolles, A, Avila, A, Virkkala, A-M, Probst, A, Ouin, A, Khuroo, AA, Verstraeten, A, Stefanski, A, Muys, B, Gozalo, B, Ahrends, B, Yang, B, Erschbamer, B, Christiansen, CT, Centre, NR, Meredieu, C, Mony, C, Nock, C, Wang, C-P, Baum, C, Rixen, C, Delire, C, Piscart, C, Andrews, C, Branquinho, C, Jan, D, Vujanović, D, Adair, EC, Crawford, ER, Hornung, E, Groner, E, Lucot, E, Gacia, E, Lévesque, E, Benedito, E, Davydov, EA, Bolzan, FP, Maestre, FT, Maunoury-Danger, F, Kitz, F, Hofhansl, F, Sutter, F, Lobo, F de A, Souza, FL, Zehetner, F, Koffi, FK, Certini, G, Pinha, GD, González, G, Pauli, H, Bahamonde, HA, Feldhaar, H, Jäger, H, Serrano, HC, Verheyden, H, Bruelheide, H, Meesenburg, H, Jungkunst, H, Jactel, H, Kurokawa, H, Yesilonis, I, Halder, I van, Quirós, IG, Fekete, I, Ostonen, I, Borovská, J, Roales, J, Shoqeir, JH, Probst, J-L, Vijayanathan, J, Dolezal, J, Sanchez-Cabeza, J-A, Merlet, J, Loehr, J, Oppen, J Von, Löffler, J, Alonso, JLB, Cardoso-Mohedano, J-G, Morina, JC, Jiménez, JJ, Alatalo, JM, Seeber, J, Kemppinen, J, Stadler, J, Kriiska, K, Meersche, K van den, Fukuzawa, K, Szlavecz, K, Gerhátová, K, Lajtha, K, Hoshizaki, K, Green, K, Steinbauer, K, Pazianoto, L, Dienstbach, L, Yahdjian, L, Williams, LJ, Brink, L van den, Rustad, L, Carneiro, LS, Martino, L di, Villar, L, Morley, M, Lebouvier, M, Tomaselli, M, Schaub, M, Glushkova, M, Torres, MGA, Graaff, M-A de, Bauters, M, Mazón, M, Frenzel, M, Wagner, M, Didion, M, Hamid, M, Lopes, M, Apple, M, Mojses, M, Gualmini, M, Vadeboncoeur, M, Danger, M, Scherer-Lorenzen, M, Růžek, M, Isabellon, M, Musciano, M di, Carbognani, M, Zhiyanski, M, Puşcaş, M, Barna, M, Ataka, M, Luoto, M, Alsafaran, MH, Barsoum, N, Korboulewsky, N, Lecomte, N, Filippova, N, Hölzel, N, Ferlian, O, Romero, O, Pinto-JR, O, Peri, P, Turtureanu, PD, Haase, P, Macreadie, P, Reich, PB, Petřík, P, Choler, P, Marmonier, P, Ponette, Q, Guariento, RD, Canessa, R, Kiese, R, Kanka, R, Gatti, RC, Martins, RL, Ogaya, R, Georges, R, Gavilán, RG, Wittlinger, S, Suzuki, S, Martin, S, Anja, S, Gogo, S, Schueler, S, Drollinger, S, Mereu, S, Wipf, S, Trevathan-Tackett, S, Stoll, S, Löfgren, S, Trogisch, S, Seitz, S, Glatzel, S, Venn, S, Dousset, S, Mori, T, Sato, T, Hishi, T, Nakaji, T, Jean-Paul, T, Camboulive, T, Spiegelberger, T, Scholten, T, Mozdzer, TJ, Rusňák, T, Ramaswiela, T, Enoki, T, Ursu, T-M, Cella, UM di, Hamer, U, Klaus, V, Cecco, V di, Rego, V, Fontana, V, Piscová, V, Bretagnolle, V, Maire, V, Farjalla, V, Pascal, V, Zhou, W, Luo, W, Parker, W, Utsumi, Y, Kominami, Y, Kotroczó, Z and Tóth, Z (2021) Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes. Frontiers in Forests and Global Change 4, 90.CrossRefGoogle Scholar
Lefcheck, JS, Whalen, MA, Davenport, TM, Stone, JP and Duffy, JE (2013) Physiological effects of diet mixing on consumer fitness: a meta-analysis. Ecology 94, 565572. John Wiley & Sons, Ltd.CrossRefGoogle ScholarPubMed
Li, X, Cui, B, Yang, Q, Lan, Y, Wang, T and Han, Z (2013) Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China. Ecological Modelling 252, 121128. Elsevier B.V.CrossRefGoogle Scholar
Lin, D, Pang, M, Fanin, N, Wang, H, Qian, S, Zhao, L, Yang, Y, Mi, X and Ma, K (2019) Fungi participate in driving home-field advantage of litter decomposition in a subtropical forest. Plant and Soil 434, 467480.CrossRefGoogle Scholar
Makkonen, M, Berg, MP, van Logtestijn, RSP, van Hal, JR and Aerts, R (2013) Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987997.CrossRefGoogle Scholar
Mooshammer, M, Wanek, W, Zechmeister-Boltenstern, S and Richter, A (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 5, 22.CrossRefGoogle ScholarPubMed
Oliveira-Filho, AT (2009) Classificação das fitofisionomias da América do Sul cisandina tropical e subtropical: proposta de um novo sistema - prático e flexível - ou uma injeção a mais de caos?. scielo.CrossRefGoogle Scholar
Palozzi, JE and Lindo, Z (2017) Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands. Soil Biology and Biochemistry 115, 161168.CrossRefGoogle Scholar
Palozzi, JE and Lindo, Z (2018) Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biology and Biochemistry 124, 189198.CrossRefGoogle Scholar
Peel, MC, Finlayson, BL and Mcmahon, TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 16331644.CrossRefGoogle Scholar
Perez, G, Aubert, M, Decaëns, T, Trap, J and Chauvat, M (2013) Home-field advantage: a matter of interaction between litter biochemistry and decomposer biota. Soil Biology and Biochemistry 67, 245254.CrossRefGoogle Scholar
Pérez-Harguindeguy, N, Díaz, S, Garnier, E, Lavorel, S, Poorter, H, Jaureguiberry, P, Bret-Harte, MS, Cornwell, WK, Craine, JM, Gurvich, DE, Urcelay, C, Veneklaas, EJ, Reich, PB, Poorter, L, Wright, IJ, Ray, P, Enrico, L, Pausas, JG, de Vos, AC, Buchmann, N, Funes, G, Quétier, F, Hodgson, JG, Thompson, K, Morgan, HD, ter Steege, H, Sack, L, Blonder, B, Poschlod, P, Vaieretti, MV, Conti, G, Staver, AC, Aquino, S and Cornelissen, JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167234.CrossRefGoogle Scholar
Sakai, S (2001) Phenological diversity in tropical forests. Population Ecology 43, 7786.CrossRefGoogle Scholar
Scarano, FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Annals of Botany 90, 517524.CrossRefGoogle Scholar
Silva, AC, Silva, JLA and Souza, AF (2016) Determinants of variation in heath vegetation structure on coastal dune fields in northeastern South America. Brazilian Journal of Botany 39, 605612.CrossRefGoogle Scholar
Silva, JLA, Souza, AF, Caliman, A, Voigt, EL and Lichston, JE (2018) Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecology and Evolution 8, 412.CrossRefGoogle Scholar
Silva, JLA, Souza, AF, Jardim, JG and Goto, BT (2015) Community assembly in harsh environments: the prevalence of ecological drift in the heath vegetation of South America. Ecosphere 6, 18.CrossRefGoogle Scholar
Silva, JLA, Souza, AF, Santiago, LS, Gripp, A da R, Asato, AEB, Silva, GHS, Alencar, MIG de & Caliman, A (2020) Small biodiversity effects on leaf litter production of a seasonal heath vegetation. Journal of Vegetation Science 31, 877886.CrossRefGoogle Scholar
Strickland, MS, Osburn, E, Lauber, C, Fierer, N and Bradford, MA (2009) Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23, 627636.CrossRefGoogle Scholar
Taylor, PG, Cleveland, CC, Wieder, WR, Sullivan, BW, Doughty, CE, Dobrowski, SZ and Townsend, AR (2017) Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters 20, 779788. John Wiley & Sons, Ltd.CrossRefGoogle ScholarPubMed
Team R Development Core (2018) A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Tharayil, N, Suseela, V, Triebwasser, DJ, Preston, CM, Gerard, PD and Dukes, JS (2011) Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive. New Phytologist 191, 132145. John Wiley & Sons, Ltd.CrossRefGoogle ScholarPubMed
Vázquez, DP and Stevens, RD (2004) The latitudinal gradient in Niche breadth: concepts and evidence. The American Naturalist 164, E1E19. The University of Chicago Press.CrossRefGoogle ScholarPubMed
Veen, GF (Ciska), Fry, EL, Ten Hooven, FC, Kardol, P, Morriën, E and de Long, JR (2019) The role of plant litter in driving plant-soil feedbacks. Frontiers in Environmental Science 7, 168.CrossRefGoogle Scholar
Veen, GF (Ciska), Keiser, AD, van der Putten, WH and Wardle, DA (2018) Variation in home-field advantage and ability in leaf litter decomposition across successional gradients. Functional Ecology 32, 15631574.CrossRefGoogle Scholar
Veen, GF (Ciska), Sundqvist, MK and Wardle, DA (2015a) Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology 29, 981991.CrossRefGoogle Scholar
Veen, GFC, Freschet, GT, Ordonez, A and Wardle, DA (2015b) Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124, 187–195.CrossRefGoogle Scholar
Vitousek, PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285298.CrossRefGoogle Scholar
Vivanco, L and Austin, AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology 96, 727736.CrossRefGoogle Scholar
Waring, BG (2012) A meta-analysis of climatic and chemical controls on leaf litter decay rates in tropical forests. Ecosystems 15, 9991009.CrossRefGoogle Scholar
Weedon, JT, Cornwell, WK, Cornelissen, JHC, Zanne, AE, Wirth, C and Coomes, DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters 12, 4556.CrossRefGoogle ScholarPubMed
Zhang, H, Yuan, W, Dong, W and Liu, S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20, 240247.CrossRefGoogle Scholar
Zhou, S, Butenschoen, O, Barantal, S, Handa, IT, Makkonen, M, Vos, V, Aerts, R, Berg, MP, Mckie, B, van Ruijven, J, Hättenschwiler, S and Scheu, S (2020) Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. Journal of Ecology 108, 22832297.CrossRefGoogle Scholar
Supplementary material: PDF

Alencar et al. supplementary material

Alencar et al. supplementary material

Download Alencar et al. supplementary material(PDF)
PDF 231.5 KB