Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-27T11:38:51.169Z Has data issue: false hasContentIssue false

Falls Risk and Hospitalization among Retired Workers with Occupational Noise-Induced Hearing Loss

Published online by Cambridge University Press:  17 December 2013

Serge André Girard*
Affiliation:
Institut national de santé publique du Québec
Tony Leroux
Affiliation:
École d’orthophonie et d’audiologie, Université de Montréal Laboratoire d’études sur l’audition, Institut Raymond-Dewar, Centre de recherche interdisciplinaire en réadaptation
René Verreault
Affiliation:
Département de médecine sociale et préventive, Université Laval, Québec
Marilène Courteau
Affiliation:
Institut national de santé publique du Québec
Michel Picard
Affiliation:
École d’orthophonie et d’audiologie, Université de Montréal
Fernand Turcotte
Affiliation:
Département de médecine sociale et préventive, Université Laval, Québec
Julie Baril
Affiliation:
Institut national de santé publique du Québec École d’orthophonie et d’audiologie, Université de Montréal
*
*Correspondence and requests for reprints should be sent to / La correspondance et les demandes de tirés-à-part doivent être adressées à: Serge André Girard, M.A. Institut national de santé publique du Québec Direction des risques biologiques et de la santé au travail 945 ave Wolfe, QC G1V 5B3 (serge.andre.girard@inspq.qc.ca, sagperso@gmail.com)

Abstract

This study sought to ascertain whether occupational noise-induced hearing loss (NIHL) increased the risk of falls requiring hospitalization among retired workers. The study population consisted of males (age ≥ 65) with an average occupational noise exposure of 30.6 years and whose mean bilateral hearing loss was 42.2 dB HL at 3, 4, and 6 kHz. Seventy-two retired workers admitted to hospitals after a fall were matched with 216 controls from the same industrial sectors. Conditional logistic regression models were used to estimate the risk (odds ratio; [OR]) of falls leading to hospitalization by NIHL categories. Results showed a relationship between severe NIHL (≥ 52.5 dB HL) and the occurrence of a fall (OR: 1.97, CI95%: 1.001–3.876). Reducing falls among seniors fosters the maintenance of their autonomy. There is a definite need to acquire knowledge about harmful effects of occupational noise to support the prevention of NIHL and ensure healthier workplaces.

Résumé

L’étude vise à vérifier si une perte auditive d’origine professionnelle, contribue au risque de chute avec hospitalisation chez des retraités. Des hommes (≥ 65 ans) exposés au bruit en moyenne durant 30,6 ans et dont la perte auditive bilatérale moyenne est de 42,2 dB HL (3, 4 et 6 kHz) sont étudiés. 72 travailleurs retraités hospitalisés suite à une chute sont appariés à 216 retraités des mêmes secteurs industriels. Des modèles de régression logistique conditionnelle sont utilisés pour estimer le rapport de cote (RC) par catégories de perte auditive. Les résultats montrent une relation entre une perte auditive sévère (≥ 52,5 dB HL) et une chute (RC = 1,97 IC95%: 1,001 à 3,876). Réduire les chutes chez les personnes âgées favorise le maintien de leur autonomie. Il faut développer les connaissances sur les effets nocifs du bruit au travail, promouvoir la santé auditive et favoriser de saines conditions de travail.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cassou, B., Derriennic, F., Iwatsubo, Y., & Amphoux, M. (1992). Physical disability after retirement and occupational risk factors during working life: A cross sectional epidemiological study in the Paris area. Journal of Epidemiology and Community Health, 46, 506511.CrossRefGoogle ScholarPubMed
Concha-Barrientos, M., Campbell-Lendrum, D., & Steenland, K. (2004). Occupational noise: Assessing the burden of disease from work-related hearing impairment at national and local levels, Environmental burden of disease series, No. 9, World Health Organization, 33 pages.Google Scholar
Croteau, A. (2009). Effets du bruit en milieu de travail durant la grossesse: synthèse systématique avec méta-analyse et méta-régression, Institut national de santé publique du Québec, Direction des risques biologiques et de la santé au travail, 99 pages.Google Scholar
Davies, H. W., Teschke, K., Kennedy, S. M., Hodgson, M. R., Hertzman, C., & Demers, P. A. (2005). Occupational exposure to noise and mortality from acute myocardial infarction. Epidemiology, 16(1), 2532.CrossRefGoogle ScholarPubMed
de Noronha Ribeiro Daniel, F., de Souza Vale, R. G., Giani, T. S., Bacellar, S., Escobar, T., Stoutenberg, M., et al. (2011). Correlation between static balance and functional autonomy in elderly women. Archives of Gerontology and Geriatrics, 52(1), 111114.CrossRefGoogle ScholarPubMed
Fuller, G. F. (2000). Falls in the elderly. American Family Physician, 61(7), 21592168, 2173–2174.Google ScholarPubMed
Gerson, L. W., Jarjoura, D., & McCord, G. (1989). Risk of imbalance in elderly people with impaired hearing or vision. Age and Aging, 18, 3134.CrossRefGoogle ScholarPubMed
Girard, S. A., Picard, M., Davis, A. C., Simard, M., Larocque, R., Leroux, T., et al. (2009). Multiple work-related accidents: Tracing the role of hearing status and noise exposure, Occupational and Environmental Medicine, 66(5), 319324.CrossRefGoogle ScholarPubMed
Golz, A., Westerman, S. T., Westerman, L. M., Goldenberg, D., Netzer, A., Wiedmyer, , et al. (2001). The effects of noise on the vestibular system. American Journal of Otorynolaryngology, 22(3), 190196.CrossRefGoogle ScholarPubMed
Guest, M., Boggess, M., D’Este, C., Attia, J., & Brown, A. (2011). An observed relationship between vestibular function and auditory thresholds in aircraft-maintenance workers. Journal of Occupational and Environmental Medicine, 53(2), 146152.CrossRefGoogle ScholarPubMed
Hétu, R., Boudreault, V., Balthazard, M., Fontaine, F., Fortier, P., & Lemoine, O. (1981). Protocole d’évaluation rétrospective de l’audition d’une population exposée au bruit industriel. Montréal, QC: CORAQ.Google Scholar
Hickson, L., Wood, J., Chaparro, A., Lacherez, P., & Marzaleck, R. (2010). Hearing impairment affects older people’s ability to drive in the presence of distracters. Journal of the American Geriatrics Society, 58, 10971103.CrossRefGoogle ScholarPubMed
ISO Acoustics 7029 (1999). Statistical distribution of hearing thresholds as a function of age. Geneva: International Organization for Standardization.Google Scholar
ISO Acoustique 1999 (1990). Détermination de l’exposition au bruit en milieu professionnel et estimation du dommage auditif induit par le bruit. Genève: International Organization for Standardization.Google Scholar
ISO Acoustique 6189 (1983). Audiométrie liminaire tonale en conduction aérienne pour les besoins de la préservation de l’ouïe. Genève: International Organization for Standardization.Google Scholar
Juntunen, J., Matikainen, E., Ylikoski, J., Ylikoski, M., Ojala, M., & Vaheri, E. (1987). Postural body sway and exposure to high-energy impulse noise. Lancet, 2(8553), 261264.CrossRefGoogle ScholarPubMed
Keller, B. K., Morton, J. L., Thomas, V. S., & Potter, J. F. (1999). The effect of visual and hearing impairments on functional status. Journal of the American Geriatrics Society, 47(11), 13191325.CrossRefGoogle ScholarPubMed
Kramer, S. E., Kapteyn, T. S., Kuik, D. J., & Deeg, D. J. (2002). The association of hearing impairment and chronic diseases with psychosocial health status in older age. Journal of Aging and Health, 14(1), 122137.CrossRefGoogle ScholarPubMed
Kulmala, J., Viljanen, A., Sipilä, S., Pajala, S., Pärssinen, O., Kauppinen, M., et al. (2009). Poor vision accompanied with other sensory impairments as a predictor of falls in older women. Age & Ageing, 38, 162167.CrossRefGoogle ScholarPubMed
Kumar, K., Vivarthini, C. J., & Bhat, J. S. (2010). Vestibular evoked myogenic potential in noise-induced hearing loss. Noise and Health, 12(48), 191194.CrossRefGoogle ScholarPubMed
Li, C. Y., & Sung, F. C. (1999). A review of the healthy worker effect in occupational epidemiology. Occupational Medicine, 49(4), 225229.CrossRefGoogle ScholarPubMed
Lundalv, J. (2004). Self-reported experiences of incidents and injury events in traffic among hearing impaired people as pedestrians and cyclists. A follow-up study of mobility and use of hearing equipment. International Journal of Rehabilitation Research, 27(1), 7980.CrossRefGoogle ScholarPubMed
Manabe, Y., Kurokawa, T., Saito, T., & Saito, H. (1995). Vestibular dysfunction in noise induced hearing loss. Acta Otorynolaryngol Supplementum, 519, 262264.CrossRefGoogle ScholarPubMed
McElhinney, J., Koval, K. J., & Zuckerman, J. D. (1998). Falls and the elderly. Archives of the American of Orthopaedic Surgeons, 2(1), 6065.Google Scholar
Oosterveld, W. J., Polman, A. R., & Schoonheyt, J. (1982). Vestibular implications of noise-induced hearing loss. British Journal of Audiology, 16(4), 227232.CrossRefGoogle ScholarPubMed
Organisation mondiale de la santé (OMS), Classification international des maladies (CIM9) (ICD9). (1977). Manuel de la classification statistique international des maladies, traumatismes et causes de décès, Fondé sur les recommandations de la conférence pour la 9e révision, 1975 et adopté par la vingt-neuvième Assemblée mondiale de la Santé. Organisation Mondiale de la santé, Genève.Google Scholar
Peel, N. M. (2011). Epidemiology of falls in older age. Canadian Journal on Aging, 30, 719. doi: 10.1017/S071498081000070X CrossRefGoogle ScholarPubMed
Picard, M., Girard, S. A., Simard, M., Larocque, R., Leroux, T., & Turcotte, F. (2008a). Association of work-related accidents with noise in the workplace and noise-induced hearing loss based on the experience of some 240,000 person-years of observation. Accident Analysis and Prevention, 40, 16441652.CrossRefGoogle Scholar
Picard, M., Girard, S. A., Courteau, M., Leroux, T., Larocque, R., Turcotte, F., et al. (2008b). Could driving safety be compromised by noise exposure at work and noise-induced hearing loss? Traffic Injury Prevention, 9(5), 489499.CrossRefGoogle ScholarPubMed
Pronk, M., Deeg, D. J., Smits, C., van Tilburg, T. G., Kuik, D. J., Festen, J. M., et al. (2001). Prospective effects of hearing status on loneliness and depression in older persons: Identification of subgroups. International Journal of Audiology, 50(12), 887896. doi: 10.3109/14992027.2011.599871 CrossRefGoogle Scholar
Pyykkö, I., Aalto, H., & Ylikoski, J. (1989). Does impulse noise induce vestibular disturbances? Acta Otolaryngol Supplementum, 468, 211216.CrossRefGoogle ScholarPubMed
SAS Institute Inc. 2004. SAS® 9.1.3 ETL Studio: User’s Guide. Cary, NC: SAS Institute Inc.Google Scholar
Sazgar, A. A., Dortaj, V., Akrami, K., Akrami, S., & Karimi Yazdi, A. R. (2006). Saccular damage in patients with high-frequency sensorineural hearing loss. European Archives of Otorhinolaryngol, 263(7), 608613.CrossRefGoogle ScholarPubMed
Shupak, A., Bar-El, E., Podoshin, L., Spitzer, O., Gordon, C. R., & Ben-David, J. (1994). Vestibular findings associated with chronic noise induced hearing impairment. Acta Otolaryngol, 114(6), 579585.CrossRefGoogle ScholarPubMed
Termoz, N., & Prince, F. (2005). Implications des entrées auditives dans le contrôle postural de personnes non-voyantes, Symposiums scientifiques sur l’incapacité visuelle et la réadaptation, La vision des sens: un autre point de vue et Basse vision et société, École d’optométrie, Université de Montréal, 5457.Google Scholar
Van der Laan, F. L. (2001). Noise exposure and its effect on the Labyrinth, part I. International Tinnitus Journal, 7(2), 97100.Google ScholarPubMed
van Kempen, E. E., Kruize, H., Boshuizen, H. C., Ameling, C. B., Staatsen, B. A., & de Hollander, A. E. (2002). The association between noise exposure and blood pressure and ischemic heart disease: A meta-analysis. Environmental Health Perspective, 110(3), 307317.CrossRefGoogle ScholarPubMed
Viljanen, A., Kaprio, J., Pyykkö, I., Sorri, M., Pajala, S., Kauppinen, M., et al. (2009a). Hearing as a predictor of falls and postural balance in older female twins. The Journal of Gerontology. Series A, Biological Sciences and Medical Sciences, 64(2), 312317.CrossRefGoogle ScholarPubMed
Viljanen, A., Kaprio, J., Pyykkö, I., Sorri, M., Koskenvuo, M., & Rantanen, T. (2009b). Hearing acuity as a predictor of walking difficulties in older women. Journal of the American Geriatrics Society, 57(12), 22822286.CrossRefGoogle ScholarPubMed
Zecevic, A. A., Chesworth, B. M., Zaric, G. S., Huang, Q., Salmon, A., McAuslan, D., et al. (2012). Estimating the cost of serious injurious falls in a Canadian acute care hospital. Canadian Journal on Aging, 31(2), 139147.CrossRefGoogle Scholar
Zuniga, M. G., Dinkes, R. E., Davalos-Bichara, M., Carey, J. P., Schubert, M. C., King, W. M., et al. (2012). Association between hearing loss and saccular dysfunction in older individuals. Otology and Neurology, 33, 15861592.CrossRefGoogle ScholarPubMed
Zwerling, C., Sprince, N. L., Davis, C. S., Whitten, P. S., Wallace, R. B., & Heeringa, S. G. (1998). Occupational injuries among older workers with disabilities: A prospective cohort study of the health and retirement survey, 1992 to 1994. American Journal of Public Health, 88(11), 16911695.CrossRefGoogle ScholarPubMed