Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T14:31:38.147Z Has data issue: false hasContentIssue false

Lattice response of the porous coordination framework Zn(hba) to guest adsorption

Published online by Cambridge University Press:  02 August 2017

Josie E. Auckett
Affiliation:
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
A. David Dharma
Affiliation:
School of Chemistry, University of Melbourne, VIC 3010, Australia
Marina P. Cagnes
Affiliation:
National Deuteration Facility, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
Tamim A. Darwish
Affiliation:
National Deuteration Facility, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
Brendan F. Abrahams
Affiliation:
School of Chemistry, University of Melbourne, VIC 3010, Australia
Ravichandar Babarao
Affiliation:
School of Science, RMIT University, VIC 3000, Australia
Timothy A. Hudson
Affiliation:
School of Chemistry, University of Melbourne, VIC 3010, Australia
Richard Robson
Affiliation:
School of Chemistry, University of Melbourne, VIC 3010, Australia
Keith F. White
Affiliation:
School of Chemistry, University of Melbourne, VIC 3010, Australia
Vanessa K. Peterson*
Affiliation:
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: vanessa.peterson@ansto.gov.au

Abstract

Analysis of in situ neutron powder diffraction data collected for the porous framework material Zn(hba) during gas adsorption reveals a two-stage response of the host lattice to increasing CO2 guest concentration, suggesting progressive occupation of multiple CO2 adsorption sites with different binding strengths. The response of the lattice to moderate CH4 guest concentrations is virtually indistinguishable from the response to CO2, demonstrating that the influence of host–guest interactions on the Zn(hba) framework is defined more strongly by the concentration than by the identity of the guests.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, B. F., Dharma, A. D., Donnelly, P. S., Hudson, T. A., Kepert, C. J., Robson, R., Southon, P. D., and White, K. F.Tunable porous coordination polymers for the capture, recovery and storage of inhalation anesthetics,” Chem. Eur. J. 23, 78717875.Google Scholar
Chevreau, H., Liang, W., Kearley, G. J., Duyker, S. G., D'Alessandro, D. M., and Peterson, V. K. (2015). “Concentration-dependent binding of CO2 and CD4 in UiO-66(Zr),” J. Phys. Chem. C 119, 69806987.Google Scholar
Coudert, F.-X., Fuchs, A. H., and Neimark, A. V. (2014). “Comment on Volume shrinkage of a metal-organic framework host induced by the dispersive attraction of guest gas molecules”, PCCP 16, 43944395.Google Scholar
D'Alessandro, D. M., Smit, B., and Long, J. R. (2010). “Carbon dioxide capture: prospects for new materials,” Angew. Chem. Int. Ed. 49, 60586082.Google Scholar
Darwish, T. A., Yepuri, N. R., Holden, P. J., and James, M. (2016). “Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts,” Anal. Chim. Acta 927, 8998.Google Scholar
Hamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G. D., Maurin, G., Serre, C., Driver, G., Van Beek, W., Jolimaître, E., Vimont, A., Daturi, M., and Férey, G. (2009). “Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF,” J. Am. Chem. Soc. 131, 1749017499.Google Scholar
Lee, S., Chevreau, H., Booth, N., Duyker, S. G., Ogilvie, S. H., Imperia, P., and Peterson, V. K. (2016). “Powder sample-positioning system for neutron scattering allowing gas delivery in top-loading cryofurnaces,” J. Appl. Crystallogr. 49, 705711.Google Scholar
Li, J.-R., Kuppler, R. J., and Zhou, H.-C. (2009). “Selective gas adsorption and separation in metal-organic frameworks,” Chem. Soc. Rev. 38, 14771504.Google Scholar
Li, Y. and Yang, R. T. (2007). “Gas adsorption and storage in metal-organic framework MOF-177,” Langmuir 23, 1293712944.Google Scholar
Millward, A. R. and Yaghi, O. M. (2005). “Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature,” J. Am. Chem. Soc. 127, 1799817999.Google Scholar
Momma, K. and Izuma, F. (2008). “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr. 41, 653658.Google Scholar
Studer, A. J., Hagen, M. E., and Noakes, T. J. (2006). “Wombat: the high-intensity powder diffractometer at the OPAL reactor,” Physica B 385–86, 10131015.Google Scholar
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H., and Long, J. R. (2012). “Carbon dioxide capture in metal–organic frameworks,” Chem. Rev. 112, 724781.Google Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS-II: the genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Wang, Y. and Zhao, D. (2017). “Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation,” Cryst. Growth Des. 17, 22912308.CrossRefGoogle Scholar
White, K. F., Abrahams, B. F., Babarao, R., Dharma, A. D., Hudson, T. A., Maynard-Casely, H. E., and Robson, R. (2015). “A new structural family of gas-sorbing coordination polymers derived from phenolic carboxylic acids,” Chem. Eur. J. 21, 1805718061.Google Scholar
Yang, S., Sun, J., Ramirez-Cuesta, A. J., Callear, S. K., David, W. I. F., Anderson, DP., Newby, R., Blake, A. J., Parker, J. E., Tang, C. C., and Schröder, M. (2012). “Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host,” Nat. Chem. 4, 887894.Google Scholar
Supplementary material: PDF

Auckett supplementary material

Auckett supplementary material

Download Auckett supplementary material(PDF)
PDF 146.4 KB