Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T12:42:56.093Z Has data issue: false hasContentIssue false

The retinae of Prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae

Published online by Cambridge University Press:  02 June 2009

Heather M. Young
Affiliation:
Vision, Touch, and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia
David I. Vaney
Affiliation:
National Vision Research Institute of Australia, Carlton, Victoria 3056, Australia

Abstract

This study has shown that the retinae of Prototherian (egg-laying) mammals possess two neuronal types that are present in non-mammalian retinae, but absent or morphologically different in the retinae of Eutherian (placental) mammals. First, endogenous serotonin-like immunoreactivity has been localized in a population of presumptive amacrine cells in the platypus retina, the first such report in a mammalian retina. Second, the protein kinase C-immunoreactive (PKC-IR) bipolar cells in the echidna retina appear similar to the PKC-IR bipolars in the chicken retina, in that their dendrites give rise to a Landolt's club and their axons are multistratified. By contrast, the PKC-IR rod bipolar cells in the rabbit and in the brushtail possum, a Metatherian (marsupial) mammal, have no Landolt's clubs and their axons form terminal lobes in the innermost stratum of the inner plexiform layer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, A. & Nesbett, F.B. (1981). In vitro retina as an experimental model of the central nervous system. Journal of Neurochemistry 37 867877.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Philosophical Transactions of the Royal Society B (London) 255, 109184.Google Scholar
Cajal, S.R. (1933). Die Retina der Wirbeltiere. Wiesbaden: Bergman. [ Translated by Thorpe, S.A. & Glickstein, M. (1972). The Structure of the Retina. Springfield, Illinois: Thomas.]Google Scholar
Campbell, C.B.G. (1974). On the Phyletic relationships of the tree shrews. Mammology Reviews 4, 125143.CrossRefGoogle Scholar
Consolazione, A., Milstein, C., Wright, B. & Cuello, A.C. (1981). Immunocytochemical detection of serotonon with monoclonal antibodies. Journal of Histochemistry and Cytochemistry 12, 14251430.CrossRefGoogle Scholar
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabit retina: a depolarizing biploar and amacrine cell. Jounrnal of Neuroscience 6, 331345.Google Scholar
Dowling, J.E. (1987). The Retina. An Approachable Part of the Brain. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Ehinger, B. & Florén, I. (1976). Indoleamine-accumlating neurons in the retina of rabbit, cat and goldfish. Cell and Tissue Research 197, 175194.Google Scholar
Ehinger, B. & Holmgren, I.. (1979). Electron microscopy of the indoleamine-accumulating neurons in the retina of the rabbit Cell and Tissue Research 197, 175194.CrossRefGoogle ScholarPubMed
Engbretson, G.A. & Battelle, B.A.. (1987). Serotonin and dopamine in the retina of a lizard. Journal of Comparative Neurology 257, 140147.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1981). Functional architecture of cone bipolar cells in mammalian retina. Vision Research 21, 15591563.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research 84, 293300.CrossRefGoogle Scholar
Gresser, E.B. & Noback, C.V. (1935). The eye of the monotreme, Echidna hystrix. Journal of Morphology 58, 279284.CrossRefGoogle Scholar
Grünert, U., Greferath, U. & Wässle, H. (1989). Rod bipolar cells show protein kinase C-like immunoreactivity in the cat and other mammalian retinae. Society for Neuroscience Abstracts 15, 1209.Google Scholar
Gynther, I.C., Young, H.M. & Vaney, D.I. (1989). Topographic relationships between rod-signal interneurons in rabbit retina. Society for Neuroscience Abstracts 15, 967.Google Scholar
Hendrickson, A. (1966). Landolt's club in the amphibian retina. A Golgi and electron-microscope study. Investigative Ophthalmology and Visual Science 5, 484496.Google ScholarPubMed
Holmgren-Taylor, I. (1982). Electron-microscopical observations of the indoleamine-accumulating neurons and their synaptic contacts in the retina of the cat. Journal of Comparative Neurology 208, 144156.CrossRefGoogle ScholarPubMed
Jerison, H.J. (1973). Evolution of the Brain and Intelligence. New York: Academic Press.Google Scholar
Johnson, J.I. (1986). Mammalian evolution as seen in visual and other neural systems. In Visual Neuroscience, ed. Pettigrew, J.D., Sanderson, K.J. & Levick, W.R., pp. 196207. Cambridge, England: Cambridge University Press.Google Scholar
Kirsch, J.A.W., Johnson, J.I. & Switzer, R.C. (1983). Phylogeny through brain traits: the mammalian family tree. Brain Behavior and Evolution 22, 7074.CrossRefGoogle ScholarPubMed
Kolb, H. (1982). The morphology of the bipolar cells, amacrine cells, and ganglion cells in the retina of the turtle (Pseudemys scripta elegans). Philosophical Transactions of the Royal Society B (London) 298, 355393.Google ScholarPubMed
Kolb, H. & Wang, H.H. (1985). The distribution of photoreceptors, dopaminergic amacrine cells and ganglion cells in the retina of the North American opossums (Didelphis virginiana). Vision Research 25, 12071222.CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells, and ganglion cells of the cat retina: a Golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Locket, N.A. (1970). Landolt's club in the retina of the African lung- fish (Protopterus aethiopicus) Heckel. Vision Research 10, 299306.CrossRefGoogle Scholar
Marc, R.E., Liu, W.-L.S., Scholz, K. & Muller, J.F. (1988). Serotonergic and Serotonin-accumulating neurons in the goldfish retina. Journal of Neuroscience 8, 34273450.CrossRefGoogle ScholarPubMed
McLean, I.W. & Nakane, P.K. (1974). Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy Journal of Histochemistry and Cytochemistry 22, 10771083.CrossRefGoogle ScholarPubMed
Mariani, A.P. (1987). Neuronal and Synaptic organization of the outer plexiform layer of the pigeon retina. American Journal of anatomy 179, 2539.CrossRefGoogle ScholarPubMed
Millar, T.J., Winder, C., Ishimoto, I. & Morgan, I.G. (1988). Putative serotonergic bipolar and amacrine cells in the chicken retina. Brain Research 439, 7787.CrossRefGoogle ScholarPubMed
Negishi, K., Kato, S. & Teranishi, T. (1988). Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retains. Neuroscience Letters 94, 247252.CrossRefGoogle Scholar
O'Day, K. (1952). Observations on the eye of the monotreme. Transactions of the Ophthalmological Society of Australia 12, 95104.Google Scholar
Osborne, N.N. (1982). Uptake, localization, and release of serotonin in the chick retina. Journal of physiology (London) 331, 469479.CrossRefGoogle ScholarPubMed
Osborne, N.N., Nesselhut, T., Nicholas, D.A., Patel, S. & Cuello, A.C. (1982). Serotonin-containing neurones in vertebrate retinas. Journal of Neurochemistry 39, 15191528.CrossRefGoogle ScholarPubMed
Pettigrew, J.D., Jamieson, B.G.M., Robson, S.K.. Hall, L.S., McAnally, K.I. & Cooper, H.M. (1989). Phylogenetic relations between microbats and primates (Mammalia: Chiroptera and Primates). Philosophical Transactions of the Royal Society (London) 325, 489559.Google Scholar
Pirlot, P. & Nelson, J. (1978). Volumetric analyses of monotremebrains. Australian Zoology 20, 171179.Google Scholar
Polyak, S. (1941) The Vertebrate Vistual System. Chicago, Illinois:University of Chicago Press.Google Scholar
Quesada, A., Prada, F.A. & Genis-Galvez, J.M. (1988). Bipolar cells in teh chicken retina. Journal of Morphology 197, 337351CrossRefGoogle Scholar
Raviola, G. & Raviola, E.. (1967). Light- and electron-microscopic observations on the inner plexiform layer of the rabbit retina. American Journal of Anatomy 120, 403426.CrossRefGoogle ScholarPubMed
Saito, T., Kujiraoka, T., Yonaha, T., & Chino, Y. (1985). Re-examination of photoreceptor-bipolar connectivity in carp retina: HRP-EM and Golgi-EM studies. Journal of Comparative Neurology 236, 141160.CrossRefGoogle Scholar
Sandell, J.H. & Masland, R.H. (1986). A system of indoleamine-accumulating neurons in the rabbit retina. Journal of Neuroscience 6, 33313347.CrossRefGoogle ScholarPubMed
Sandell, J.H. & Masland, R.H. (1989). Indoleamine accumulation by retinal neurons exposed to blood. Histochemistry 92, 5760.CrossRefGoogle ScholarPubMed
Stell, W.K. (1967). The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. American Journal of Anatomy 121, 401423.CrossRefGoogle ScholarPubMed
Studholme, K.M., Yazulla, S. & Phillips, C.J. (1987). Interspecific comparisons of immunohistochemical localization of retinal neurotransmitters in four species of bats. Brain Behavior and Evolution 30, 160173.CrossRefGoogle ScholarPubMed
Tornqvist, K.S., Hansson, C. & Ehinger, B. (1983). Immunohistochemical and quantitative analysis of 5-hydroxytryptamine in the retina of some vertebrates. Neurochemistry International 5, 299308.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1986). Morphological identification of serotonin accumulating neurons in the living retina. Science 233, 444446.CrossRefGoogle ScholarPubMed
Walls, G.L. (1942). The Vertebrate Eye and its Adaptive Radiation. New York: Hafner Publishing Company.Google Scholar
Wässle, H., Voigt, T. & Patel, B. (1987). Morphological and immuno-cytochemical identification of indoleamine-accumulating neurons in the cat retina. Journal of Neuroscience 7, 15741585.CrossRefGoogle Scholar
Weiler, R. & Schütte, M. (1985). Morphological and pharmacological analysis of putative serotonergic bipolar and amacrine cells in the retina of a turtle (Pseudemys scripta elegans). Cell and Tissue Research 241, 373382.CrossRefGoogle ScholarPubMed
Witkovsky, P., Eldred, W. & Karten, H.J. (1984). Catecholamine and indoleamine-containing neurons in the turtle retina. Journal of Comparative Neurology 228, 217225.CrossRefGoogle ScholarPubMed
Wong, R.O.L., Henry, G.H. & Medveczky, C.J. (1986). Bistratified amacrine cells in the retina of the tammar wallaby. Evperimental Brain Research 63, 102105.Google ScholarPubMed
Young, H.M. & Vaney, D.I. (1990). Rod-signal interneurons in the rabbit retina, I: Rod bipolar cells. Journal of Comparative Neurology (submitted).Google Scholar