Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T16:39:46.838Z Has data issue: false hasContentIssue false

Neuroimaging endophenotypes in autism spectrum disorder

Published online by Cambridge University Press:  03 August 2015

Rajneesh Mahajan*
Affiliation:
Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland, USA Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Stewart H. Mostofsky
Affiliation:
Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland, USA Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
*
*Address for correspondence, Rajneesh Mahajan, MD, Kennedy Krieger Institute, Center for Autism and Related Disorders, 3901 Greenspring Avenue, Baltimore, MD 21211, USA. (Email: mahajan@kennedykrieger.org)

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has a strong genetic basis, and is heterogeneous in its etiopathogenesis and clinical presentation. Neuroimaging studies, in concert with neuropathological and clinical research, have been instrumental in delineating trajectories of development in children with ASD. Structural neuroimaging has revealed ASD to be a disorder with general and regional brain enlargement, especially in the frontotemporal cortices, while functional neuroimaging studies have highlighted diminished connectivity, especially between frontal-posterior regions. The diverse and specific neuroimaging findings may represent potential neuroendophenotypes, and may offer opportunities to further understand the etiopathogenesis of ASD, predict treatment response, and lead to the development of new therapies.

Type
Review Articles
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ruggeri, B, Sarkans, U, Schumann, G, Persico, AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl). 2014; 231(6): 12011216.Google Scholar
2. Gottesman, II, Gould, TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003; 160(4): 636645.Google Scholar
3. John, B, Lewis, KR. Chromosome variability and geographic distribution in insects. Science. 1966; 152(3723): 711721.Google Scholar
4. Gottesman, II, Shields, J. A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A. 1967; 58(1): 199205.Google Scholar
5. Shields, J, Gottesman, II. Cross-national diagnosis of schizophrenia in twins. The heritability and specificity of schizophrenia. Arch Gen Psychiatry. 1972; 27(6): 725730.Google Scholar
6. Cannon, TD, Keller, MC. Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin Psychol. 2006; 2: 267290.CrossRefGoogle ScholarPubMed
7. Viding, E, Blakemore, SJ. Endophenotype approach to developmental psychopathology: Implications for autism research. Behav Genet. 2007; 37(1): 5160.CrossRefGoogle ScholarPubMed
8. Skuse, DH. Rethinking the nature of genetic vulnerability to autistic spectrum disorders. Trends Genet. 2007; 23(8): 387395.Google Scholar
9. DiCicco-Bloom, E, Lord, C, Zwaigenbaum, L, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci. 2006; 26(26): 68976906.Google Scholar
10. Kanner, L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968; 35(4): 100136.Google ScholarPubMed
11. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Morb Mortal Wkly Rep. 2014; 63(SS02): 121.Google Scholar
12. Newschaffer, CJ, Croen, LA, Daniels, J, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007; 28: 235258.Google Scholar
13. DSM-5 | psychiatry.org. http://www.psychiatry.org/dsm5. Accessed January 1, 2015.Google Scholar
14. Lord, C, Rutter, M, Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders. 1994; 24(5): 659685.Google Scholar
15. Lord, C, Risi, S, Lambrecht, L, Cook, EH, Jr, Leventhal, BL, DiLavore, PC, Rutter, M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders. 2000; 30(3): 205223.Google Scholar
16. Wing, L, Gould, J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord. 1979; 9(1): 1129.CrossRefGoogle ScholarPubMed
17. Geschwind, DH, Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007; 17(1): 103111.Google Scholar
18. Freitag, CM, Staal, W, Klauck, SM, Duketis, E, Waltes, R. Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry. 2010; 19(3): 169178.Google Scholar
19. Lichtenstein, P, Carlström, E, Råstam, M, Gillberg, C, Anckarsäter, H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010; 167(11): 13571363.Google Scholar
20. Folstein, S, Rutter, M. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry. 1977; 18(4): 297321.Google Scholar
21. Folstein, S, Rutter, M. Genetic influences and infantile autism. Nature. 1977; 265(5596): 726728.Google Scholar
22. Folstein, SE, Rutter, ML. Autism: familial aggregation and genetic implications. J Autism Dev Disord. 1988; 18(1): 330.Google Scholar
23. Bailey, A, Le Couteur, A, Gottesman, I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995; 25(1): 6377.Google Scholar
24. Bolton, P, Macdonald, H, Pickles, A, et al. A case-control family history study of autism. J Child Psychol Psychiatry. 1994; 35(5): 877900.Google Scholar
25. Constantino, JN, Zhang, Y, Frazier, T, Abbacchi, AM, Law, P. Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry. 2010; 167(11): 13491356.CrossRefGoogle ScholarPubMed
26. Constantino, JN, Todorov, A, Hilton, C, et al. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry. 2013; 18(2): 137138.CrossRefGoogle ScholarPubMed
27. Sumi, S, Taniai, H, Miyachi, T, Tanemura, M. Sibling risk of pervasive developmental disorder estimated by means of an epidemiologic survey in Nagoya, Japan. J Hum Genet. 2006; 51(6): 518522.CrossRefGoogle ScholarPubMed
28. Piven, J, Palmer, P, Jacobi, D, Childress, D, Arndt, S. Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry. 1997; 154(2): 185190.Google ScholarPubMed
29. Constantino, JN, Todd, RD. Autistic traits in the general population: a twin study. Arch Gen Psychiatry. 2003; 60(5): 524530.Google Scholar
30. Constantino, JN, Todd, RD. Intergenerational transmission of subthreshold autistic traits in the general population. Biol Psychiatry. 2005; 57(6): 655660.Google Scholar
31. Hoekstra, RA, Bartels, M, Verweij, CJ, Boomsma, DI. Heritability of autistic traits in the general population. Arch Pediatr Adolesc Med. 2007; 161(4): 372377.Google Scholar
32. Geschwind, DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011; 15(9): 409416.Google Scholar
33. Schaefer, GB, Mendelsohn, NJ; Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013; 15(5): 399407.Google Scholar
34. Schaefer, GB, Mendelsohn, NJ; Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders. Genet Med. 2008; 10(4): 301305.CrossRefGoogle ScholarPubMed
35. Miles, JH. Autism spectrum disorders—a genetics review. Genet Med. 2011; 13(4): 278294.Google Scholar
36. Sebat, J, Lakshmi, B, Malhotra, D, et al. Strong associations of de novo copy number mutations with autism. Science. 2007; 316(5823): 445449.Google Scholar
37. Michaelson, JJ, Shi, Y, Gujral, M, et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell. 2012; 151(7): 14311442.Google Scholar
38. Persico, AM, Napolioni, V. Autism genetics. Behav Brain Res. 2013; 251: 95112.Google Scholar
39. Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee, SH, Ripke, S, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013; 45(9): 984994.Google Scholar
40. Willsey, JA, State, MW. Autism spectrum disorders: from genes to neurobiology. Current Opinion in Neurobiology. 2015; 30: 9299.Google Scholar
41. Casey, BJ, Giedd, JN, Thomas, KM. Structural and functional brain development and its relation to cognitive development. Biol Psychology. 2000; 54(1–3): 241257.Google Scholar
42. Tau, GZ, Peterson, BS. Normal development of brain circuits. Neuropsychopharmacology. 2010; 35(1): 147168.Google Scholar
43. Kretschmann, HJ, Kammradt, G, Krauthausen, I, Sauer, B, Wingert, F. Brain growth in man. Bibl Anat. 1986; 28: 126.Google Scholar
44. Gogtay, N, Giedd, JN, Lusk, L, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004; 101(21): 81748179.CrossRefGoogle ScholarPubMed
45. Sowell, ER, Thompson, PM, Leonard, CM, Welcome, SE, Kan, E, Toga, AW. Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci. 2004; 24(38): 82238231.Google Scholar
46. Mechelli, A, Friston, KJ, Frackowiak, RS, Price, CJ. Structural covariance in the human cortex. J Neurosci. 2005; 25(36): 83038310.CrossRefGoogle ScholarPubMed
47. Alexander-Bloch, A, Giedd, JN, Bullmore, E. Imaging structural co-variance between human brain regions. Nat Rev Neurosci. 2013; 14(5): 322336.Google Scholar
48. Li, X, Pu, F, Fan, Y, Niu, H, Li, S, Li, D. Age-related changes in brain structural covariance networks. Front Hum Neurosci. 2013; 7: 98.Google Scholar
49. Zielinski, BA, Gennatas, ED, Zhou, J, Seeley, WW. Network-level structural covariance in the developing brain. Proc Natl Acad Sci U S A. 2010; 107(42): 1819118196.Google Scholar
50. Rentería, ME, Hansell, NK, Strike, LT, et al. Genetic architecture of subcortical brain regions: common and region-specific genetic contributions. Genes Brain Behav. 2014; 13(8): 821830.Google Scholar
51. Alexander-Bloch, A, Raznahan, A, Bullmore, E, Giedd, J. The convergence of maturational change and structural covariance in human cortical networks. J Neurosci. 2013; 33(7): 28892899.Google Scholar
52. Stoner, R, Chow, ML, Boyle, MP, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014; 370(13): 12091219.Google Scholar
53. Connors, SL, Levitt, P, Matthews, SG, et al. Fetal mechanisms in neurodevelopmental disorders. Pediatr Neurol. 2008; 38(3): 163176.CrossRefGoogle ScholarPubMed
54. Courchesne, E, Redcay, E, Kennedy, DP. The autistic brain: birth through adulthood. Curr Opin Neurol. 2004; 17(4): 489496.Google Scholar
55. Raznahan, A, Toro, R, Daly, E, et al. Cortical anatomy in autism spectrum disorder: an in vivo MRI study on the effect of age. Cereb Cortex. 2010; 20(6): 13321340.Google Scholar
56. Courchesne, E, Pierce, K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci. 2005; 23(2–3): 153170.Google Scholar
57. Hazlett, HC, Gu, H, McKinstry, RC, et al. Brain volume findings in 6-month-old infants at high familial risk for autism. Am J Psychiatry. 2012; 169(6): 601608.Google Scholar
58. Hazlett, HC, Perez-Rodriguez, MM, Ripoll, LH, et al. Early brain development in infants at high risk for autism spectrum disorder. Biological Psychiatry. 2013; 73(9 Suppl): 115S115S.Google Scholar
59. Dawson, G, Munson, J, Webb, SJ, Nalty, T, Abbott, R, Toth, K. Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry. 2007; 61(4): 458464.Google Scholar
60. Zielinski, BA, Prigge, MB, Nielsen, JA, et al. Longitudinal changes in cortical thickness in autism and typical development. Brain. 2014; 137(6): 17991812.Google Scholar
61. Courchesne, E, Pierce, K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005; 15(2): 225230.Google Scholar
62. Casanova, MF. The neuropathology of autism. Brain Pathol. 2007; 17(4): 422433.Google Scholar
63. Casanova, MF. Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist. 2006; 12(5): 435441.Google Scholar
64. Minshew, NJ, Williams, DL. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurology. 2007; 64(7): 945950.Google Scholar
65. Courchesne, E, Karns, CM, Davis, HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001; 57(2): 245254.Google Scholar
66. Courchesne, E, Carper, R, Akshoomoff, N. Evidence of brain overgrowth in the first year of life in autism. JAMA. 2003; 290(3): 337344.CrossRefGoogle ScholarPubMed
67. Herbert, MR, Ziegler, DA, Deutsch, CK, et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain. 2003; 126(Pt 5): 11821192.Google Scholar
68. Williams, CA, Dagli, A, Battaglia, A. Genetic disorders associated with macrocephaly. Am J Med Genet A. 2008; 146(15): 20232037.Google Scholar
69. Chawarska, K, Campbell, D, Chen, L, Shic, F, Klin, A, Chang, J. Early generalized overgrowth in boys with autism. Arch Gen Psychiatry. 2011; 68(10): 10211031.Google Scholar
70. Campbell, DJ, Chang, J, Chawarska, K. Early generalized overgrowth in autism spectrum disorder: prevalence rates, gender effects, and clinical outcomes. J Am Acad Child Adolesc Psychiatry. 2014; 53(10): 10631073.Google Scholar
71. Conciatori, M, Stodgell, CJ, Hyman, SL, et al. Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol Psychiatry. 2004; 55(4): 413419.Google Scholar
72. Muscarella, LA, Guarnieri, V, Sacco, R, et al. HOXA1 gene variants influence head growth rates in humans. Am J Med Genet B Neuropsychiatr Genet. 2007; 144(3): 388390.Google Scholar
73. Coon, H, Dunn, D, Lainhart, J, et al. Possible association between autism and variants in the brain‐expressed tryptophan hydroxylase gene (TPH2). Am J Med Genet B Neuropsychiatr Genet. 2005; 135(1): 4246.Google Scholar
74. Ramoz, N, Cai, G, Reichert, JG, et al. Family‐based association study of TPH1 and TPH2 polymorphisms in autism. Am J Med Genet B Neuropsychiatr Genet. 2006; 141(8): 861867.Google Scholar
75. Sacco, R, Militerni, R, Frolli, A, et al. Clinical, morphological, and biochemical correlates of head circumference in autism. Biol Psychiatry. 2007; 62(9): 10381047.CrossRefGoogle ScholarPubMed
76. Egawa, J, Watanabe, Y, Nunokawa, A, et al. A detailed association analysis between the tryptophan hydroxylase 2 (TPH2) gene and autism spectrum disorders in a Japanese population. Psychiatry Res. 2012; 196(2–3): 320322.Google Scholar
77. Peculis, R, Konrade, I, Skapare, E, et al. Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene. 2013; 515(1): 140143.Google Scholar
78. Gabriele, S, Lombardi, F, Sacco, R, et al. The GLO1 C332 (Ala111) allele confers autism vulnerability: family-based genetic association and functional correlates. J Psychiatr Res. 2014; 59: 108116.Google Scholar
79. Varga, EA, Pastore, M, Prior, T, Herman, GE, McBride, KL. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009; 11(2): 111117.Google Scholar
80. Buxbaum, JD, Cai, G, Chaste, P, et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet B Neuropsychiatr Genet. 2007; 144(4): 484491.Google Scholar
81. McBride, KL, Varga, EA, Pastore, MT, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010; 3(3): 137141.Google Scholar
82. Frazier, TW, Embacher, R, Tilot, A, Koenig, K, Mester, J, Eng, C. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. In press. DOI: 10.1038/mp.2014.125.Google Scholar
83. Stevenson, RE, Schroer, RJ, Skinner, C, Fender, D, Simensen, RJ. Autism and macrocephaly. Lancet. 1997; 349(9067): 17441745.Google Scholar
84. Fidler, DJ, Bailey, JN, Smalley, SL. Macrocephaly in autism and other pervasive developmental disorders. Dev Med Child Neurol. 2000; 42(11): 737740.Google Scholar
85. Lainhart, JE, Piven, J, Wzorek, M, et al. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry. 1997; 36(2): 282290.Google Scholar
86. Desikan, RS, Ségonne, F, Fischl, B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006; 31(3): 968980.Google Scholar
87. Mori, S, Oishi, K, Jiang, H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008; 40(2): 570582.Google Scholar
88. Mori, S, Oishi, K, Faria, AV. White matter atlases based on diffusion tensor imaging. Curr Opin Neurol. 2009; 22(4): 362369.Google Scholar
89. Wakana, S, Jiang, H, Nagae-Poetscher, LM, Van Zijl, PC, Mori, S. Fiber tract–based atlas of human white matter anatomy 1. Radiology. 2004; 230(1): 7787.Google Scholar
90. Raznahan, A, Giedd, JN, Bolton, PF. Neurostructural endophenotypes in autism spectrum disorder. In: Ritsner MS, ed. The Handbook of Ne uropsychiatric Biomarkers, Endophenotypes and Genes, Volume II: Neuroanatomical and Neuroimaging Endophentypes and Biomarkers . Springer, Netherlands; 2009: 145169.Google Scholar
91. Anagnostou, E, Taylor, MJ. Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism. 2011; 2(1): 4.Google Scholar
92. Jordan, I, Murphy, D. Update on neuroimaging findings in autism spectrum disorder. Advances in Mental Health and Intellectual Disabilities. 2011; 5(6): 1931.Google Scholar
93. Stigler, KA, McDonald, BC, Anand, A, Saykin, AJ, McDougle, CJ. Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res. 2011; 1380: 146161.Google Scholar
94. Travers, BG, Adluru, N, Ennis, C, et al. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 2012; 5(5): 289313.Google Scholar
95. Casanova, MF, El-Baz, AS, Suri, J, eds. Ima ging the Brain in Autism . Springer-Verlag, New York; 2013. Ebook. http://www.springer.com/biomed/book/978-1-4614-6842-4. Accessed January 11, 2015.Google Scholar
96. Barnea-Goraly, N, Marzelli, MJ. Introduction to neuroimaging research in autism spectrum disorders. In: Patel VB, Preedy VR, Martin CR, eds. Compr ehensive Guide to Autism . Springer-Verlag, New York; 2014: 893909.CrossRefGoogle Scholar
97. Dichter, GS. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin Neurosci. 2012; 14(3): 319351.Google Scholar
98. Goldman-Rakic, PS. Development of cortical circuitry and cognitive function. Child Dev. 1987; 58(3): 601622.Google Scholar
99. Panizzon, MS, Fennema-Notestine, C, Eyler, LT, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009; 19(11): 27282735.Google Scholar
100. Hazlett, HC, Poe, M, Gerig, G, et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry. 2005; 62(12): 13661376.Google Scholar
101. Carper, RA, Moses, P, Tigue, ZD, Courchesne, E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage. 2002; 16(4): 10381051.Google Scholar
102. Schumann, CM, Bloss, CS, Barnes, CC, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci. 2010; 30(12): 44194427.Google Scholar
103. Hazlett, HC, Poe, MD, Gerig, G, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry. 2011; 68(5): 467476.Google Scholar
104. Carper, RA, Courchesne, E. Localized enlargement of the frontal cortex in early autism. Biol Psychiatry. 2005; 57(2): 126133.Google Scholar
105. Mostofsky, SH, Burgess, MP, Larson, JCG. Increased motor cortex white matter volume predicts motor impairment in autism. Brain. 2007; 130(8): 21172122.Google Scholar
106. Lemche, E, Giampietro, VP, Surguladze, SA, et al. Human attachment security is mediated by the amygdala: evidence from combined fMRI and psychophysiological measures. Hum Brain Mapp. 2006; 27(8): 623635.Google Scholar
107. Baron-Cohen, S, Ring, HA, Bullmore, ET, Wheelwright, S, Ashwin, C, Williams, S. The amygdala theory of autism. Neurosci Biobehav Rev. 2000; 24(3): 355364.Google Scholar
108. Howard, MA, Cowell, PE, Boucher, J, et al. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport. 2000; 11(13): 29312935.Google Scholar
109. Sweeten, TL, Posey, DJ, Shekhar, A, McDougle, CJ. The amygdala and related structures in the pathophysiology of autism. Pharmacol Biochem Behav. 2002; 71(3): 449455.Google Scholar
110. Schultz, RT. Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area. Int J Dev Neurosci. 2005; 23(2): 125141.Google Scholar
111. Courchesne, E, Pierce, K, Schumann, CM, et al. Mapping early brain development in autism. Neuron. 2007; 56(2): 399413.Google Scholar
112. Schumann, CM, Barnes, CC, Lord, C, Courchesne, E. Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry. 2009; 66(10): 942949.Google Scholar
113. Aylward, EH, Minshew, NJ, Goldstein, G, et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology. 1999; 53(9): 21452150.Google Scholar
114. Schumann, CM, Hamstra, J, Goodlin-Jones, BL, et al. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci. 2004; 24(28): 63926401.Google Scholar
115. Stanfield, AC, McIntosh, AM, Spencer, MD, Philip, R, Gaur, S, Lawrie, SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008; 23(4): 289299.Google Scholar
116. Ito, M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008; 9(4): 304313.Google Scholar
117. Strick, PL, Dum, RP, Fiez, JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009; 32: 413434.Google Scholar
118. Hodge, SM, Makris, N, Kennedy, DN, et al. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord. 2010; 40(3): 300316.Google Scholar
119. Stoodley, CJ, Schmahmann, JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010; 46(7): 831844.Google Scholar
120. Piven, J, Saliba, K, Bailey, J, Arndt, S. An MRI study of autism: the cerebellum revisited. Neurology. 1997; 49(2): 546551.Google Scholar
121. Hardan, AY, Minshew, NJ, Harenski, K, Keshavan, MS. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry. 2001; 40(6): 666672.Google Scholar
122. Sparks, BF, Friedman, SD, Shaw, DW, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology. 2002; 59(2): 184192.Google Scholar
123. Courchesne, E, Yeung-Courchesne, R, Hesselink, JR, Jernigan, TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988; 318(21): 13491354.Google Scholar
124. Murakami, JW, Courchesne, E, Press, GA, Yeung-Courchesne, R, Hesselink, JR. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989; 46(6): 689694.Google Scholar
125. Saitoh, O, Courchesne, E. Magnetic resonance imaging study of the brain in autism. Psychiatry Clin Neurosci. 1998; 52(Suppl): S219S222.Google Scholar
126. Courchesne, E, Townsend, J, Akshoomoff, NA, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994; 108(5): 848865.Google Scholar
127. Carper, RA, Courchesne, E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000; 123(Pt 4): 836844.Google Scholar
128. Allen, G. The cerebellum in autism. Clin Neuropsychiatry. 2005; 2(6): 321337.Google Scholar
129. Courchesne, E, Campbell, K, Solso, S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011; 1380: 138145.Google Scholar
130. Duerden, EG, Mak‐Fan, KM, Taylor, MJ, Roberts, SW. Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta‐analysis. Autism Res. 2012; 5(1): 4966.Google Scholar
131. Yu, KK, Cheung, C, Chua, SE, McAlonan, GM. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. J Psychiatry Neurosci. 2011; 36(6): 412421.Google Scholar
132. Stoodley, CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014; 8: 92.Google Scholar
133. Cleavinger, HB, Bigler, ED, Johnson, JL, Lu, J, McMahon, W, Lainhart, JE. Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism. J Int Neuropsychol Soc. 2008; 14(3): 401413.Google Scholar
134. Alexander, GE, Crutcher, MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990; 13(7): 266271.Google Scholar
135. Middleton, FA, Strick, PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 2000; 42(2): 183200.Google Scholar
136. Bostan, AC, Dum, RP, Strick, PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013; 17(5): 241254.Google Scholar
137. Utter, AA, Basso, MA. The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev. 2008; 32(3): 333342.Google Scholar
138. Hollander, E, Anagnostou, E, Chaplin, W, et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry. 2005; 58(3): 226232.Google Scholar
139. Estes, A, Shaw, DWW, Sparks, BF, et al. Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Res. 2011; 4(3): 212220.Google Scholar
140. Sears, LL, Vest, C, Mohamed, S, Bailey, J, Ranson, BJ, Piven, J. An MRI study of the basal ganglia in autism. Prog Neuropsychopharmacol Biol Psychiatry. 1999; 23(4): 613624.Google Scholar
141. Voelbel, GT, Bates, ME, Buckman, JF, Pandina, G, Hendren, RL. Caudate nucleus volume and cognitive performance: are they related in childhood psychopathology? Biol Psychiatry. 2006; 60(9): 942950.Google Scholar
142. Langen, M, Durston, S, Staal, WG, Palmen, SJ, van Engeland, H. Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry. 2007; 62(3): 262266.Google Scholar
143. Hardan, AY, Kilpatrick, M, Keshavan, MS, Minshew, NJ. Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. J Child Neurol. 2003; 18(5): 317324.Google Scholar
144. Qiu, A, Adler, M, Crocetti, D, Miller, MI, Mostofsky, SH. Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2010; 49(6): 539551.Google Scholar
145. Gazzaniga, MS. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain. 2000; 123(Pt 7): 12931326.Google Scholar
146. Anderson, JS, Druzgal, TJ, Froehlich, A, et al. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011; 21(5): 11341146.Google Scholar
147. Frazier, TW, Hardan, AY. A meta-analysis of the corpus callosum in autism. Biol Psychiatry. 2009; 66(10): 935941.Google Scholar
148. Egaas, B, Courchesne, E, Saitoh, O. Reduced size of corpus callosum in autism. Arch Neurol. 1995; 52(8): 794801.Google Scholar
149. Hardan, AY, Minshew, NJ, Keshavan, MS. Corpus callosum size in autism. Neurology. 2000; 55(7): 10331036.Google Scholar
150. Waiter, GD, Williams, JH, Murray, AD, Gilchrist, A, Perrett, DI, Whiten, A. Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: a voxel-based investigation. Neuroimage. 2005; 24(2): 455461.Google Scholar
151. Piven, J, Bailey, J, Ranson, BJ, Arndt, S. An MRI study of the corpus callosum in autism. Am J Psychiatry. 1997; 154(8): 10511056.Google Scholar
152. Freitag, CM, Luders, E, Hulst, HE, et al. Total brain volume and corpus callosum size in medication-naive adolescents and young adults with autism spectrum disorder. Biol Psychiatry. 2009; 66(4): 316319.Google Scholar
153. Just, MA, Cherkassky, VL, Keller, TA, Kana, RK, Minshew, NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007; 17(4): 951961.Google Scholar
154. Alexander, AL, Lee, JE, Lazar, M, et al. Diffusion tensor imaging of the corpus callosum in autism. Neuroimage. 2007; 34(1): 6173.Google Scholar
155. Mason, RA, Williams, DL, Kana, RK, Minshew, N, Just, MA. Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia. 2008; 46(1): 269280.Google Scholar
156. Kilian, S, Brown, WS, Hallam, BJ, et al. Regional callosal morphology in autism and macrocephaly. Dev Neuropsychol. 2007; 33(1): 7499.Google Scholar
157. Rice, SA, Bigler, ED, Cleavinger, HB, et al. Macrocephaly, corpus callosum morphology, and autism. J Child Neurol. 2005; 20(1): 3441.Google Scholar
158. Lefebvre, A, Beggiato, A, Bourgeron, T, Toro, R. Neuroanatomical diversity of corpus callosum and brain volume in the Autism Brain Imaging Data Exchange (ABIDE) project. Biol Psychiatry. In press. DOI: 10.1016/j.biopsych.2015.02.010.Google Scholar
159. Aylward, EH, Minshew, NJ, Goldstein, G, et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology. 1999; 53(9): 21452150.Google Scholar
160. Haznedar, MM, Buchsbaum, MS, Wei, T, et al. Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am J Psychiatry. 2000; 157(12): 19942001.Google Scholar
161. Bigler, ED, Tate, DF, Neeley, ES, et al. Temporal lobe, autism, and macrocephaly. AJNR Am J Neuroradiol. 2003; 24(10): 20662076.Google Scholar
162. Nicolson, R, DeVito, TJ, Vidal, CN, et al. Detection and mapping of hippocampal abnormalities in autism. Psychiatry Res. 2006; 148(1): 1121.Google Scholar
163. Groen, W, Teluij, M, Buitelaar, J, Tendolkar, I. Amygdala and hippocampus enlargement during adolescence in autism. J Am Acad Child Adolesc Psychiatry. 2010; 49(6): 552560.Google Scholar
164. Barnea-Goraly, N, Frazier, TW, Piacenza, L, et al. A preliminary longitudinal volumetric MRI study of amygdala and hippocampal volumes in autism. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 48: 124128.Google Scholar
165. Herbert, MR, Harris, GJ, Adrien, KT, et al. Abnormal asymmetry in language association cortex in autism. Ann Neurol. 2002; 52(5): 588596.Google Scholar
166. Pierce, K, Muller, RA, Ambrose, J, Allen, G, Courchesne, E. Face processing occurs outside the fusiform 'face area' in autism: evidence from functional MRI. Brain. 2001; 124(Pt 10): 20592073.Google Scholar
167. Toal, F, Daly, E, Page, L, et al. Clinical and anatomical heterogeneity in autistic spectrum disorder: a structural MRI study. Psychol Med. 2010; 40(7): 11711181.Google Scholar
168. Waiter, GD, Williams, JH, Murray, AD, Gilchrist, A, Perrett, DI, Whiten, A. A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage. 2004; 22(2): 619625.Google Scholar
169. Levitt, JG, Blanton, RE, Smalley, S, et al. Cortical sulcal maps in autism. Cereb Cortex. 2003; 13(7): 728735.Google Scholar
170. Boddaert, N, Chabane, N, Gervais, H, et al. Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage. 2004; 23(1): 364369.Google Scholar
171. Zilbovicius, M, Meresse, I, Chabane, N, Brunelle, F, Samson, Y, Boddaert, N. Autism, the superior temporal sulcus and social perception. Trends Neurosci. 2006; 29(7): 359366.Google Scholar
172. Rojas, DC, Bawn, SD, Benkers, TL, Reite, ML, Rogers, SJ. Smaller left hemisphere planum temporale in adults with autistic disorder. Neurosci Lett. 2002; 328(3): 237240.Google Scholar
173. Rojas, DC, Camou, SL, Reite, ML, Rogers, SJ. Planum temporale volume in children and adolescents with autism. J Autism Dev Disord. 2005; 35(4): 479486.Google Scholar
174. Abell, F, Krams, M, Ashburner, J, et al. The neuroanatomy of autism: a voxel‐based whole brain analysis of structural scans. Neuroreport. 1999; 10(8): 16471651.Google Scholar
175. Jou, RJ, Minshew, NJ, Melhem, NM, Keshavan, MS, Hardan, AY. Brainstem volumetric alterations in children with autism. Psychol Med. 2009; 39(8): 13471354.Google Scholar
176. Shukla, DK, Keehn, B, Müller, R. Tract‐specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder. J Child Psychol Psychiatry. 2011; 52(3): 286295.Google Scholar
177. Catani, M. Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Curr Opin Neurol. 2006; 19(6): 599606.Google Scholar
178. Alexander, AL, Lee, JE, Lazar, M, Field, AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007; 4(3): 316329.Google Scholar
179. Chanraud, S, Zahr, N, Sullivan, EV, Pfefferbaum, A. MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychol Rev. 2010; 20(2): 209225.Google Scholar
180. Mukherjee, P, McKinstry, RC. Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am. 2006; 16(1): 1943.CrossRefGoogle ScholarPubMed
181. White, T, Nelson, M, Lim, KO. Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging. 2008; 19(2): 97109.Google Scholar
182. Jou, RJ, Jackowski, AP, Papademetris, X, Rajeevan, N, Staib, LH, Volkmar, FR. Diffusion tensor imaging in autism spectrum disorders: preliminary evidence of abnormal neural connectivity. Aust N Z J Psychiatry. 2011; 45(2): 153162.Google Scholar
183. Herbert, MR, Ziegler, DA, Makris, N, et al. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol. 2004; 55(4): 530540.Google Scholar
184. Shukla, DK, Keehn, B, Smylie, DM, Müller, RA. Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder. Neuropsychologia. 2011; 49(5): 13781382.Google Scholar
185. Casanova, MF, van Kooten, IA, Switala, AE, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006; 112(3): 287303.Google Scholar
186. Casanova, MF. Intracortical circuitry: one of psychiatry’s missing assumptions. Eur Arch Psychiatry Clin Neurosci. 2004; 254(3): 148151.Google Scholar
187. Buxhoeveden, D, Semendeferi, K, Buckwalter, J, Schenker, N, Switzer, R, Courchesne, E. Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol. 2006; 32(5): 483491.Google Scholar
188. Barnea-Goraly, N, Kwon, H, Menon, V, Eliez, S, Lotspeich, L, Reiss, AL. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry. 2004; 55(3): 323326.Google Scholar
189. Courchesne, E, Pierce, K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005; 15(2): 225230.Google Scholar
190. Lee, JE, Bigler, ED, Alexander, AL, et al. Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neurosci Lett. 2007; 424(2): 127132.Google Scholar
191. Sundaram, SK, Kumar, A, Makki, MI, Behen, ME, Chugani, HT, Chugani, DC. Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cereb Cortex. 2008; 18(11): 26592665.Google Scholar
192. Kumar, A, Sundaram, SK, Sivaswamy, L, et al. Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex. 2010; 20(9): 21032113.Google Scholar
193. Shukla, DK, Keehn, B, Smylie, DM, Müller, R. Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder. Neuropsychologia. 2011; 49(5): 13781382.Google Scholar
194. Ben Bashat, D, Kronfeld-Duenias, V, Zachor, DA, et al. Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage. 2007; 37(1): 4047.Google Scholar
195. Barnea-Goraly, N, Lotspeich, LJ, Reiss, AL. Similar white matter aberrations in children with autism and their unaffected siblings: a diffusion tensor imaging study using tract-based spatial statistics. Arch Gen Psychiatry. 2010; 67(10): 10521060.Google Scholar
196. Peterson, D, Mahajan, R, Crocetti, D, Mejia, A, Mostofsky, S. Left‐hemispheric microstructural abnormalities in children with high‐functioning autism spectrum disorder. Autism Res. 2015; 8(1): 6172.Google Scholar
197. Dawson, G, Warrenburg, S, Fuller, P. Cerebral lateralization in individuals diagnosed as autistic in early childhood. Brain Lang. 1982; 15(2): 353368.Google Scholar
198. Dawson, G. Lateralized brain dysfunction in autism: evidence from the Halstead-Reitan neuropsychological battery. J Autism Dev Disord. 1983; 13(3): 269286.Google Scholar
199. Escalante-Mead, PR, Minshew, NJ, Sweeney, JA. Abnormal brain lateralization in high-functioning autism. J Autism Dev Disord. 2003; 33(5): 539543.Google Scholar
200. Kleinhans, NM, Müller, R, Cohen, DN, Courchesne, E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008; 1221: 115125.Google Scholar
201. Hubl, D, Bolte, S, Feineis-Matthews, S, et al. Functional imbalance of visual pathways indicates alternative face processing strategies in autism. Neurology. 2003; 61(9): 12321237.Google Scholar
202. Dalton, KM, Nacewicz, BM, Johnstone, T, et al. Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci. 2005; 8(4): 519526.Google Scholar
203. Pelphrey, KA, Morris, JP, McCarthy, G, Labar, KS. Perception of dynamic changes in facial affect and identity in autism. Soc Cogn Affect Neurosci. 2007; 2(2): 140149.Google Scholar
204. Humphreys, K, Hasson, U, Avidan, G, Minshew, N, Behrmann, M. Cortical patterns of category‐selective activation for faces, places and objects in adults with autism. Autism Res. 2008; 1(1): 5263.Google Scholar
205. Klin, A. Three things to remember if you are a functional magnetic resonance imaging researcher of face processing in autism spectrum disorders. Biol Psychiatry. 2008; 64(7): 549551.Google Scholar
206. Corbett, BA, Carmean, V, Ravizza, S, et al. A functional and structural study of emotion and face processing in children with autism. Psychiatry Res. 2009; 173(3): 196205.Google Scholar
207. Pierce, K, Glad, KS, Schreibman, L. Social perception in children with autism: an attentional deficit? J Autism Dev Disord. 1997; 27(3): 265282.Google Scholar
208. Dawson, G, Meltzoff, AN, Osterling, J, Rinaldi, J, Brown, E. Children with autism fail to orient to naturally occurring social stimuli. J Autism Dev Disord. 1998; 28(6): 479485.Google Scholar
209. Schultz, RT, Grelotti, DJ, Klin, A, et al. The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos Trans R Soc Lond B Biol Sci. 2003; 358(1430): 415427.Google Scholar
210. Jones, W, Carr, K, Klin, A. Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Arch Gen Psychiatry. 2008; 65(8): 946954.Google Scholar
211. Ishitobi, M, Kosaka, H, Omori, M, et al. Differential amygdala response to lower face in patients with autistic spectrum disorders: an fMRI study. Research in Autism Spectrum Disorders. 2011; 5(2): 910919.Google Scholar
212. Paul, LK, Corsello, C, Tranel, D, Adolphs, R. Does bilateral damage to the human amygdala produce autistic symptoms? J Neurodev Disord. 2010; 2(3): 165173.Google Scholar
213. Aoki, Y, Cortese, S, Tansella, M. Neural bases of atypical emotional face processing in autism: a meta-analysis of fMRI studies. World J Biol Psychiatry. In press. DOI: 10.3109/15622975.2014.957719.Google Scholar
214. Yucel, G, Parlier, M, Adolphs, R, et al. Face processing in the broad autism phenotype: an fMRI study. Biol Psychiatry. 2010; 67: 43S.Google Scholar
215. Ahmed, AA, Vander Wyk, BC. Neural processing of intentional biological motion in unaffected siblings of children with autism spectrum disorder: an fMRI study. Brain Cogn. 2013; 83(3): 297306.Google Scholar
216. Ciaramidaro, A, Bolte, S, Schlitt, S, et al. Schizophrenia and autism as contrasting minds: neural evidence for the hypo-hyper-intentionality hypothesis. Schizophr Bull. 2015; 41(1): 171179.Google Scholar
217. Kaiser, MD, Hudac, CM, Shultz, S, et al. Neural signatures of autism. Proc Natl Acad Sci U S A. 2010; 107(49): 2122321228.Google Scholar
218. Iacoboni, M. Imitation, empathy, and mirror neurons. Annu Rev Psychol. 2009; 60: 653670.Google Scholar
219. Leslie, KR, Johnson-Frey, SH, Grafton, ST. Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage. 2004; 21(2): 601607.Google Scholar
220. Dapretto, M, Davies, MS, Pfeifer, JH, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci. 2005; 9(1): 2830.Google Scholar
221. Iacoboni, M, Dapretto, M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006; 7(12): 942951.Google Scholar
222. Southgate, V, Hamilton, AF. Unbroken mirrors: challenging a theory of autism. Trends Cogn Sci. 2008; 12(6): 225229.Google Scholar
223. Kleinhans, NM, Müller, R, Cohen, DN, Courchesne, E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008; 1221: 115125.Google Scholar
224. Kana, RK, Keller, TA, Cherkassky, VL, Minshew, NJ, Just, MA. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain. 2006; 129(Pt 9): 24842493.Google Scholar
225. Wang, AT, Lee, SS, Sigman, M, Dapretto, M. Neural basis of irony comprehension in children with autism: the role of prosody and context. Brain. 2006; 129(Pt 4): 932943.Google Scholar
226. Eigsti, I, Schuh, J, Mencl, E, Schultz, RT, Paul, R. The neural underpinnings of prosody in autism. Child Neuropsychol. 2012; 18(6): 600617.Google Scholar
227. Knaus, TA, Silver, AM, Lindgren, KA, Hadjikhani, N, Tager-Flusberg, H. fMRI activation during a language task in adolescents with ASD. J Int Neuropsychol Soc. 2008; 14(6): 967979.CrossRefGoogle ScholarPubMed
228. Eyler, LT, Pierce, K, Courchesne, E. A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain. 2012; 135(Pt 3): 949960.Google Scholar
229. Mody, M, Manoach, DS, Guenther, FH, et al. Speech and language in autism spectrum disorder: a view through the lens of behavior and brain imaging. Neuropsychiatry. 2013; 3(2): 223232.Google Scholar
230. Mosconi, M, Kay, M, D’Cruz, A, et al. Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychol Med. 2009; 39(9): 15591566.Google Scholar
231. Solomon, M, Ozonoff, SJ, Ursu, S, et al. The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia. 2009; 47(12): 25152526.Google Scholar
232. Lewis, M, Kim, S. The pathophysiology of restricted repetitive behavior. J Neurodev Disord. 2009; 1(2): 114132.Google Scholar
233. Delmonte, S, Gallagher, L, O'Hanlon, E, McGrath, J, Balsters, JH. Functional and structural connectivity of frontostriatal circuitry in autism spectrum disorder. Front Hum Neurosci. 2013; 7: 430.Google Scholar
234. Mandy, WP, Skuse, DH. Research review: What is the association between the social‐communication element of autism and repetitive interests, behaviours and activities? J Child Psychol Psychiatry. 2008; 49(8): 795808.Google Scholar
235. Ronald, A, Happé, F, Bolton, P, et al. Genetic heterogeneity between the three components of the autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry. 2006; 45(6): 691699.Google Scholar
236. Silverman, JM, Smith, CJ, Schmeidler, J, et al. Symptom domains in autism and related conditions: evidence for familiality. Am J Med Genet. 2002; 114(1): 6473.Google Scholar
237. Just, MA, Keller, TA, Malave, VL, Kana, RK, Varma, S. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012; 36(4): 12921313.Google Scholar
238. Just, MA, Cherkassky, VL, Keller, TA, Kana, RK, Minshew, NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007; 17(4): 951961.Google Scholar
239. Just, MA, Cherkassky, VL, Keller, TA, Minshew, NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004; 127(Pt 8): 18111821.Google Scholar
240. Mostofsky, SH, Powell, SK, Simmonds, DJ, Goldberg, MC, Caffo, B, Pekar, JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009; 132(Pt 9): 24132425.Google Scholar
241. Kana, RK, Keller, TA, Cherkassky, VL, Minshew, NJ, Just, MA. Atypical frontal-posterior synchronization of theory of mind regions in autism during mental state attribution. Social Neurosci. 2009; 4(2): 135152.Google Scholar
242. Koshino, H, Carpenter, PA, Minshew, NJ, Cherkassky, VL, Keller, TA, Just, MA. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage. 2005; 24(3): 810821.Google Scholar
243. Koshino, H, Kana, RK, Keller, TA, Cherkassky, VL, Minshew, NJ, Just, MA. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex. 2008; 18(2): 289300.Google Scholar
244. Kana, RK, Keller, TA, Minshew, NJ, Just, MA. Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry. 2007; 62(3): 198206.Google Scholar
245. Damarla, SR, Keller, TA, Kana, RK, et al. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Res. 2010; 3(5): 273279.Google Scholar
246. Biswal, B, Zerrin Yetkin, F, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med. 1995; 34(4): 537541.Google Scholar
247. Huettel, SA, Song, AW, McCarthy, G. Functional Magnetic Resonance Imaging. Vol 1. Sinauer Associates: Sunderland, MA; 2004.Google Scholar
248. van den Heuvel, MP, Hulshoff Pol, HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacology. 2010; 20(8): 519534.Google Scholar
249. Van Dijk, KR, Hedden, T, Venkataraman, A, Evans, KC, Lazar, SW, Buckner, RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2010; 103(1): 297321.Google Scholar
250. Uddin, LQ. The self in autism: an emerging view from neuroimaging. Neurocase. 2011; 17(3): 201208.Google Scholar
251. Keown, CL, Shih, P, Nair, A, Peterson, N, Mulvey, ME, Müller, R. Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep. 2013; 5(3): 567572.Google Scholar
252. Buckner, RL, Andrews‐Hanna, JR, Schacter, DL. The brain’s default network. Ann N Y Acad Sci. 2008; 1124(1): 138.Google Scholar
253. Assaf, M, Jagannathan, K, Calhoun, VD, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage. 2010; 53(1): 247256.Google Scholar
254. Uddin, LQ, Supekar, K, Menon, V. Typical and atypical development of functional human brain networks: insights from resting-state fMRI. Front Syst Neurosci. 2010; 4: 21.Google Scholar
255. Supekar, K, Uddin, LQ, Prater, K, Amin, H, Greicius, MD, Menon, V. Development of functional and structural connectivity within the default mode network in young children. Neuroimage. 2010; 52(1): 290301.Google Scholar
256. Cherkassky, VL, Kana, RK, Keller, TA, Just, MA. Functional connectivity in a baseline resting-state network in autism. Neuroreport. 2006; 17(16): 16871690.Google Scholar
257. Nebel, MB, Joel, SE, Muschelli, J, et al. Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp. 2014; 35(2): 567580.Google Scholar
258. Ecker, C, Murphy, D. Neuroimaging in autism-from basic science to translational research. Nat Rev Neurol. 2014; 10(2): 8291.Google Scholar
259. Reiersen, AM, Todorov, AA. Association between DRD4 genotype and autistic symptoms in DSM-IV ADHD. J Can Acad Child Adolesc Psychiatry. 2011; 20(1): 1521.Google Scholar
260. Ronald, A, Simonoff, E, Kuntsi, J, Asherson, P, Plomin, R. Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. J Child Psychol Psychiatry. 2008; 49(5): 535542.Google Scholar
261. Reiersen, AM, Constantino, JN, Volk, HE, Todd, RD. Autistic traits in a population-based ADHD twin sample. J Child Psychol Psychiatry. 2007; 48(5): 464472.Google Scholar
262. Murray, MJ. Attention-deficit/hyperactivity disorder in the context of autism spectrum disorders. Curr Psychiatry Rep. 2010; 12(5): 382388.Google Scholar
263. Hanson, E, Cerban, B, Slater, C, Caccamo, L, Bacic, J, Chan, E. Brief report: Prevalence of attention deficit/hyperactivity disorder among individuals with an autism spectrum disorder. J Autism Dev Disord. 2013; 43(6): 14591464.Google Scholar
264. Rommelse, NN, Franke, B, Geurts, HM, Hartman, CA, Buitelaar, JK. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry. 2010; 19(3): 281295.Google Scholar
265. Kotte, A, Joshi, G, Fried, R, et al. Autistic traits in children with and without ADHD. Pediatrics. 2013; 132(3): e612e622.Google Scholar
266. Shaw, P, Eckstrand, K, Sharp, W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007; 104(49): 1964919654.Google Scholar
267. Rommelse, NNJ, Geurts, HM, Franke, B, Buitelaar, JK, Hartman, CA. A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev. 2011; 35(6): 13631396.Google Scholar
268. Gargaro, BA, Rinehart, NJ, Bradshaw, JL, Tonge, BJ, Sheppard, DM. Autism and ADHD: how far have we come in the comorbidity debate? Neurosci Biobehav Rev. 2011; 35(5): 10811088.Google Scholar
269. White, SW, Schry, AR, Maddox, BB. Brief report: The assessment of anxiety in high-functioning adolescents with autism spectrum disorder. J Autism Dev Disord. 2012; 42(6): 11381145.Google Scholar
270. Vasa, RA, Carroll, LM, Nozzolillo, AA, et al. A systematic review of treatments for anxiety in youth with autism spectrum disorders. J Autism Dev Disord. 2014; 44(12): 32153229.Google Scholar