Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T08:40:21.860Z Has data issue: false hasContentIssue false

Management of cognitive impairment in bipolar disorder: a systematic review of randomized controlled trials

Published online by Cambridge University Press:  28 January 2021

Jocelyn K. Tamura
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Isabelle P. Carvalho
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Lui M. W. Leanna
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Jia Nuo Feng
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Joshua D. Rosenblat
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Rodrigo Mansur
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Yena Lee
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
Danielle S. Cha
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Kayla Teopiz
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Zara Ahmad
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Flora Nasri
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Jiin Kim
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
Roger S. McIntyre*
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
*
*Author for correspondence: Roger S. McIntyre Email: roger.McIntyre@uhn.ca

Abstract

Cognitive impairment is common in bipolar disorder and is emerging as a therapeutic target to enhance quality of life and function. A systematic search was conducted on PubMed, PsycInfo, Cochrane, clinicaltrials.gov, and Embase databases for blinded or open-label randomized controlled trials evaluating the pro-cognitive effects of pharmacological, neurostimulation, or psychological interventions for bipolar disorder. Twenty-two trials were identified, evaluating a total of 16 different pro-cognitive interventions. The methodological quality of the identified trials were assessed using the Cochrane Risk of Bias tool. Currently, no intervention (i.e., pharmacologic, neurostimulation, cognitive remediation) has demonstrated robust and independent pro-cognitive effects in adults with bipolar disorder. Findings are preliminary and methodological limitations limit the interpretation of results. Methodological considerations including, but not limited to, the enrichment with populations with pre-treatment cognitive impairment, as well as the inclusion of individuals who are in remission are encouraged. Future trials may also consider targeting interventions to specific cognitive subgroups and the use of biomarkers of cognitive function.

Type
Review
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Jocelyn K. Tamura, Isabelle P. Carvalho, Lui M. W. Leanna, and Jia Nuo Feng are co-first authors.

References

Xu, N, Huggon, B, Saunders, KEA. Cognitive impairment in patients with bipolar disorder: impact of pharmacological treatment. CNS Drugs. 2020;34(1):2946.CrossRefGoogle ScholarPubMed
Ritter, PS, Bermpohl, F, Gruber, O, et al. Aims and structure of the German Research Consortium BipoLife for the study of bipolar disorder. Int J Bipolar Disord. 2016;4(1):26.CrossRefGoogle Scholar
Bortolato, B, Miskowiak, KW, Köhler, CA, Vieta, E, Carvalho, AF. Cognitive dysfunction in bipolar disorder and schizophrenia: a systematic review of meta-analyses. Neuropsychiatr Dis Treat. 2015;11:31113125.Google ScholarPubMed
Cherie, L. Marvel, SP. Cognitive and neurological impairment in mood disorders. Psychiatr Clin North Am. 2004;27(1):19.Google Scholar
Miskowiak, KW, Burdick, KE, Martinez-Aran, A, et al. Assessing and addressing cognitive impairment in bipolar disorder: the International Society for Bipolar Disorders Targeting Cognition Task Force recommendations for clinicians. Bipolar Disord. 2018;20(3):184194. doi:10.1111/bdi.12595.CrossRefGoogle ScholarPubMed
Rosa, AR, Reinares, M, Michalak, EE, et al. Functional impairment and disability across mood states in bipolar disorder. Value Health. 2010;13(8):984988.CrossRefGoogle ScholarPubMed
Bora, E, Yucel, M, Pantelis, C. Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. J Affect Disord. 2009;113(1–2):120. doi:10.1016/j.jad.2008.06.009.CrossRefGoogle ScholarPubMed
MacQueen, GM, Memedovich, KA. Cognitive dysfunction in major depression and bipolar disorder: assessment and treatment options. Psychiatry Clin Neurosci. 2017;71(1):1827.CrossRefGoogle ScholarPubMed
Krabbendam, L, Arts, B, van Os, J, Aleman, A. Cognitive functioning in patients with schizophrenia and bipolar disorder: a quantitative review. Schizophr Res. 2005;80(2–3):137149.CrossRefGoogle ScholarPubMed
Vieta, E. The influence of medications on neurocognition in bipolar disorder. Acta Psychiatrica Scandinavica. 2009;120(6):414415. doi:10.1111/j.1600-0447.2009.01503.x.CrossRefGoogle ScholarPubMed
Bora, E, McIntyre, RS, Ozerdem, A. Neurocognitive and neuroimaging correlates of obesity and components of metabolic syndrome in bipolar disorder: a systematic review. Psychol Med. 2019;49(5):738749.CrossRefGoogle ScholarPubMed
Denicoff, KD, Ali, SO, Mirsky, AF, et al. Relationship between prior course of illness and neuropsychological functioning in patients with bipolar disorder. J Affect Disord. 1999;56(1):6773.CrossRefGoogle ScholarPubMed
Robinson, LJ, Thompson, JM, Gallagher, P, et al. A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. J Affect Disord.. 2006;93(1–3):105115. doi:10.1016/j.jad.2006.02.016.CrossRefGoogle ScholarPubMed
Tse, S, Chan, S, Ng, KL, Yatham, LN. Meta-analysis of predictors of favorable employment outcomes among individuals with bipolar disorder. Bipolar Disord. 2014;16(3):217229.CrossRefGoogle ScholarPubMed
Baune, BT, Malhi, GS. A review on the impact of cognitive dysfunction on social, occupational, and general functional outcomes in bipolar disorder. Bipolar Disord. 2015;17(Suppl 2):4155.CrossRefGoogle ScholarPubMed
Depp, CA, Mausbach, BT, Harmell, AL, et al. Meta-analysis of the association between cognitive abilities and everyday functioning in bipolar disorder. Bipolar Disord. 2012;14(3):217226.CrossRefGoogle ScholarPubMed
Cloutier, M, Greene, M, Guerin, A, Touya, M, Wu, E. The economic burden of bipolar I disorder in the United States in 2015. J Affect Disord. 2018;226:4551.CrossRefGoogle ScholarPubMed
Miller, S, Dell’Osso, B, Ketter, TA. The prevalence and burden of bipolar depression. J Affect Disord. 2014;169(Suppl 1):S3S11.CrossRefGoogle ScholarPubMed
Gomes, BC, Rocca, CC, Belizario, GO, et al. Cognitive behavioral rehabilitation for bipolar disorder patients: a randomized controlled trial. Bipolar Disord. 2019;21(7):621633.CrossRefGoogle ScholarPubMed
Lin-Lin, Y, Zhao, D, Kong, LL, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves neurocognitive function in bipolar disorder. J Affect Disord. 2019;246:851856. doi:10.1016/j.jad.2018.12.102.Google Scholar
Myczkowski, ML, Fernandes, A, Moreno, M, et al. Cognitive outcomes of TMS treatment in bipolar depression: safety data from a randomized controlled trial. J Affect Disord. 2018;235:2026.CrossRefGoogle ScholarPubMed
Lewandowski, KE, Sperry, SH, Cohen, BM, et al. Treatment to enhance cognition in bipolar disorder (TREC-BD). J Clin Psychiatry. 2017;78(9):e1242e1249. doi:10.4088/jcp.17m11476.CrossRefGoogle Scholar
Bersani, FS, Minichino, A, Bernabei, L, et al. Prefronto-cerebellar tDCS enhances neurocognition in euthymic bipolar patients. Findings from a placebo-controlled neuropsychological and psychophysiological investigation. J Affect Disord. 2017;209:262269. doi:10.1016/j.jad.2016.11.037.CrossRefGoogle ScholarPubMed
Chengappa, KNR, Bowie, CR, Schlicht, PJ, Fleet, D, Brar, JS, Jindal, R. Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J Clin Psychiatry. 2013;74(11):10761083.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Ehrenreich, H, Christensen, EM, Kessing, LV, Vinberg, M. Recombinant human erythropoietin to target cognitive dysfunction in bipolar disorder. J Clin Psychiatry. 2014;75(12):13471355. doi:10.4088/jcp.13m08839.CrossRefGoogle ScholarPubMed
Watson, S, Gallagher, P, Porter, RJ, et al. A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biol Psychiatry. 2012;72(11):943949.CrossRefGoogle ScholarPubMed
McIntyre, RS, Soczynska, JK, Woldeyohannes, HO, et al. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 2012;14(7):697706. doi:10.1111/bdi.12006.CrossRefGoogle ScholarPubMed
Ghaemi, SN, Gilmer, WS, Dunn, RT, et al. A double-blind, placebo-controlled pilot study of galantamine to improve cognitive dysfunction in minimally symptomatic bipolar disorder. J Clin Psychopharmacol. 2009;29(3):291295.CrossRefGoogle ScholarPubMed
Young, AH, Gallagher, P, Watson, S, Del-Estal, D, Owen, BM, Ferrier, IN. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology. 2004;29(8):15381545.CrossRefGoogle Scholar
Demant, KM, Vinberg, M, Kessing, LV, Miskowiak, KW. Effects of short-term cognitive remediation on cognitive dysfunction in partially or fully remitted individuals with bipolar disorder: results of a randomised controlled trial. PLOS ONE. 2015;10(6):e0127955. doi:10.1371/journal.pone.0127955.CrossRefGoogle ScholarPubMed
Toniolo, RA, de Fernandes, FBF, Silva, M, da Dias, RS, Lafer, B. Cognitive effects of creatine monohydrate adjunctive therapy in patients with bipolar depression: results from a randomized, double-blind, placebo-controlled trial. J Affect Disord. 2017;224:6975.CrossRefGoogle ScholarPubMed
Yatham, LN, Mackala, S, Basivireddy, J, et al. Lurasidone versus treatment as usual for cognitive impairment in euthymic patients with bipolar I disorder: a randomised, open-label, pilot study. Lancet Psychiatry. 2017;4(3):208217.CrossRefGoogle ScholarPubMed
Alda, M, McKinnon, M, Blagdon, R, et al. Methylene blue treatment for residual symptoms of bipolar disorder: randomised crossover study. Br J Psychiatry. 2017;210(1):5460.CrossRefGoogle ScholarPubMed
Dean, OM, Bush, AI, Copolov, DL, et al. Effects of N-acetyl cysteine on cognitive function in bipolar disorder. Psychiatry Clin Neurosci. 2012;66(6):514517.CrossRefGoogle ScholarPubMed
Burdick, KE, Braga, RJ, Nnadi, CU, Shaya, Y, Stearns, WH, Malhotra, AK. Placebo-controlled adjunctive trial of pramipexole in patients with bipolar disorder: targeting cognitive dysfunction. J Clin Psychiatry. 2012;73(1):103112.CrossRefGoogle ScholarPubMed
Kauer-Sant’Anna, M, Frey, BN, Fijtman, A, et al. Adjunctive tianeptine treatment for bipolar disorder: a 24-week randomized, placebo-controlled, maintenance trial. J Psychopharmacol. 2019;33(4):502510.CrossRefGoogle ScholarPubMed
Torrent, C, del Bonnin, CM, Martínez-Arán, A, et al. Efficacy of functional remediation in bipolar disorder: a multicenter randomized controlled study. Am J Psychiatry. 2013;170(8):852859.CrossRefGoogle ScholarPubMed
Mansur, RB, Ahmed, J, Cha, DS, et al. Liraglutide promotes improvements in objective measures of cognitive dysfunction in individuals with mood disorders: a pilot, open-label study. J Affect Disord. 2017;207:114120.CrossRefGoogle ScholarPubMed
Bernabei, L, Bersani, FS, Pompili, E, et al. Cognitive remediation for the treatment of neuropsychological disturbances in subjects with euthymic bipolar disorder: findings from a controlled study. J Affect Disord. 2020;273:576585.CrossRefGoogle ScholarPubMed
Strawbridge, R, Tsapekos, D, Hodsoll, J, et al. Cognitive remediation therapy for patients with bipolar disorder: a randomised proof-of-concept trial. Bipolar Disord. 2020;00:117. doi:10.1111/bdi.12968.Google ScholarPubMed
Ott, CV, Vinberg, M, Kessing, LV, Bowie, CR, Forman, JL, Miskowiak, KW. Effect of action-based cognitive remediation on cognitive impairment in patients with remitted bipolar disorder: a randomized controlled trial. Bipolar Disord. 2020;00:113. doi:10.1111/bdi.13021.Google ScholarPubMed
Burdick, KE, Ketter, TA, Goldberg, JF, Calabrese, JR. Assessing cognitive function in bipolar disorder: challenges and recommendations for clinical trial design. J Clin Psychiatry. 2015;76(03):e342e350. doi:10.4088/jcp.14cs09399.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Carvalho, AF, Vieta, E, Kessing, LV. Cognitive enhancement treatments for bipolar disorder: a systematic review and methodological recommendations. Eur Neuropsychopharmacol. 2016;26(10):15411561. doi:10.1016/j.euroneuro.2016.08.011.CrossRefGoogle ScholarPubMed
Tsapekos, D, Seccomandi, B, Mantingh, T, Cella, M, Wykes, T, Young, AH. Cognitive enhancement interventions for people with bipolar disorder: a systematic review of methodological quality, treatment approaches, and outcomes. Bipolar Disord. 2020;22(3):216230. doi:10.1111/bdi.12848.CrossRefGoogle ScholarPubMed
Moher, D, Liberati, A, Tetzlaff, J, Altman, DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRefGoogle ScholarPubMed
Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863.CrossRefGoogle ScholarPubMed
Lewandowski, KE, Sperry, SH, Cohen, BM, et al. Treatment to enhance cognition in bipolar disorder (TREC-BD): efficacy of a randomized controlled trial of cognitive remediation versus active control. J Clin Psychiatry. 2017;78(9):e1242e1249.CrossRefGoogle ScholarPubMed
Cooper, R, Naclerio, F, Allgrove, J, Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr. 2012;9(1):33.CrossRefGoogle ScholarPubMed
Shi, XF, Kondo, DG, Sung, YH, et al. Frontal lobe bioenergetic metabolism in depressed adolescents with bipolar disorder: a phosphorus-31 magnetic resonance spectroscopy study. Bipolar Disord. 2012;14(6):607617. doi:10.1111/j.1399-5618.2012.01040.x.CrossRefGoogle ScholarPubMed
Sargin, D, Friedrichs, H, El-Kordi, A, Ehrenreich, H. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol. 2010;24(4):573594.CrossRefGoogle ScholarPubMed
Hamer, JA, Testani, D, Mansur, RB, Lee, Y, Subramaniapillai, M, McIntyre, RS. Brain insulin resistance: a treatment target for cognitive impairment and anhedonia in depression. Exp Neurol. 2019;315:18.CrossRefGoogle ScholarPubMed
Macqueen, G, Young, T. Cognitive effects of atypical antipsychotics: focus on bipolar spectrum disorders. Bipolar Disord. 2003;5(Suppl 2):5361.CrossRefGoogle ScholarPubMed
Government of Canada, Health Canada, Health Products, Branch F. Search page—drug and health product register. Published October 23, 2014. Accessed November 8, 2020. https://hpr-rps.hres.ca/reg-content/regulatory-decision-summary-detail.php?lang=en&linkID=RDS00369.CrossRefGoogle Scholar
United States Food and Drug Administration. LATUDA (lurasidone hydrochloride) tablets—FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/200603s26s27lbl.pdf.Google Scholar
Ishibashi, T, Horisawa, T, Tokuda, K, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther. 2010;334(1):171181.CrossRefGoogle ScholarPubMed
Harvey, PD, Ogasa, M, Cucchiaro, J, Loebel, A, Keefe, RSE. Performance and interview-based assessments of cognitive change in a randomized, double-blind comparison of lurasidone vs. ziprasidone. Schizophr Res. 2011;127(1–3):188194.CrossRefGoogle Scholar
Harvey, PD, Siu, CO, Hsu, J, Cucchiaro, J, Maruff, P, Loebel, A. Effect of lurasidone on neurocognitive performance in patients with schizophrenia: a short-term placebo- and active-controlled study followed by a 6-month double-blind extension. Eur Neuropsychopharmacol. 2013;23(11):13731382.CrossRefGoogle ScholarPubMed
Alda, M. Methylene blue in the treatment of neuropsychiatric disorders. CNS Drugs. 2019;33(8):719725.CrossRefGoogle ScholarPubMed
Tang, OS, Ho, PC. Clinical applications of mifepristone. Gynecol Endocrinol. 2006;22(12):655659.CrossRefGoogle ScholarPubMed
Lombardo, G, Enache, D, Gianotti, L, et al. Baseline cortisol and the efficacy of antiglucocorticoid treatment in mood disorders: a meta-analysis. Psychoneuroendocrinology. 2019;110:104420.CrossRefGoogle ScholarPubMed
Song, LN, Coghlan, M, Gelmann, EP. Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor. Mol Endocrinol. 2004;18(1):7085.CrossRefGoogle ScholarPubMed
Dean, OM, van den Buuse, M, Berk, M, Copolov, DL, Mavros, C, Bush, AI. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and d-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett. 2011;499(3):149153.CrossRefGoogle ScholarPubMed
Berk, M, Copolov, DL, Dean, O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry. 2008;64(6):468475.CrossRefGoogle ScholarPubMed
Goldberg, JF, Burdick, KE, Endick, CJ. Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry. 2004;161(3):564566.CrossRefGoogle ScholarPubMed
Alamo, C, García-Garcia, P, Lopez-Muñoz, F, Zaragozá, C. Tianeptine, an atypical pharmacological approach to depression. Rev Psiquiatr Salud Ment. 2019;12(3):170186.CrossRefGoogle ScholarPubMed
Kasper, S, McEwen, BS. Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs. 2008;22(1):1526.CrossRefGoogle ScholarPubMed
Czéh, B, Michaelis, T, Watanabe, T, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA. 2001;98(22):1279612801.CrossRefGoogle ScholarPubMed
Kole, MHP, Swan, L, Fuchs, E. The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur J Neurosci. 2002;16(5):807816.CrossRefGoogle ScholarPubMed
Kulkarni, SK, Dhir, A. Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):10931105.CrossRefGoogle Scholar
Kuboyama, T, Tohda, C, Komatsu, K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol. 2005;144(7):961971.CrossRefGoogle ScholarPubMed
Sehgal, N, Gupta, A, Valli, RK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA. 2012;109(9):35103515.CrossRefGoogle ScholarPubMed
Konar, A, Shah, N, Singh, R, et al. Protective role of ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One. 2011;6(11):e27265.CrossRefGoogle ScholarPubMed
Wykes, T, Huddy, V, Cellard, C, McGurk, SR, Czobor, P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry. 2011;168(5):472485.CrossRefGoogle ScholarPubMed
Martinez-Aran, A, Torrent, C, Tabares-Seisdedos, R, et al. Neurocognitive impairment in bipolar patients with and without history of psychosis. J Clin Psychiatry. 2008;69(2):233239.CrossRefGoogle ScholarPubMed
Martínez-Arán, A, Torrent, C, Solé, B, et al. Functional remediation for bipolar disorder. Clin Pract Epidemiol Ment Health. 2011;7:112116.CrossRefGoogle ScholarPubMed
Marques, RC, Vieira, L, Marques, D, Cantilino, A. Transcranial magnetic stimulation of the medial prefrontal cortex for psychiatric disorders: a systematic review. Braz J Psychiatry. 2019;41(5):447457.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, André-Obadia, N, Antal, A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):21502206.CrossRefGoogle Scholar
Dell’Osso, B, Mundo, E, D’Urso, N, et al. Augmentative repetitive navigated transcranial magnetic stimulation (rTMS) in drug-resistant bipolar depression. Bipolar Disord. 2009;11(1):7681.CrossRefGoogle Scholar
Li, X, Nahas, Z, Anderson, B, Kozel, FA, George, MS. Can left prefrontal rTMS be used as a maintenance treatment for bipolar depression. Depress Anxiety. 2004;20(2):98100.CrossRefGoogle ScholarPubMed
Rostami, R, Kazemi, R, Nitsche, MA, Gholipour, F, Salehinejad, MA. Clinical and demographic predictors of response to rTMS treatment in unipolar and bipolar depressive disorders. Clin Neurophysiol. 2017;128(10):19611970.CrossRefGoogle ScholarPubMed
George, MS, Speer, AM, Molloy, M, et al. Low frequency daily left prefrontal rTMS improves mood in bipolar depression: a placebo-controlled case report. Human Psychopharmacol: Clin Exp. 1998;13(4):271275.3.0.CO;2-G>CrossRefGoogle Scholar
Fitzgerald, PB, Hoy, KE, Elliot, D, McQueen, S, Wambeek, LE, Daskalakis, ZJ. A negative double-blind controlled trial of sequential bilateral rTMS in the treatment of bipolar depression. J Affect Disord. 2016;198:158162.CrossRefGoogle ScholarPubMed
Dolberg, OT, Dannon, PN, Schreiber, S, Grunhaus, L. Transcranial magnetic stimulation in patients with bipolar depression: a double blind, controlled study. Bipolar Disord. 2002;4(Suppl 1):9495.CrossRefGoogle ScholarPubMed
Kenney-Jung, DL, Blacker, CJ, Camsari, DD, Lee, JC, Lewis, CP. Transcranial direct current stimulation: mechanisms and psychiatric applications. Child Adolesc Psychiatr Clin N Am. 2019;28(1):5360.CrossRefGoogle ScholarPubMed
Sterne, JAC, Savović, J, Page, MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.CrossRefGoogle ScholarPubMed
Iosifescu, DV, Moore, CM, Deckersbach, T, et al. Galantamine-ER for cognitive dysfunction in bipolar disorder and correlation with hippocampal neuronal viability: a proof-of-concept study. CNS Neurosci Therapeutics. 2009;15(4):309319. doi:10.1111/j.1755-5949.2009.00090.x.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Burdick, KE, Martinez-Aran, A, et al. Methodological recommendations for cognition trials in bipolar disorder by the International Society for Bipolar Disorders Targeting Cognition Task Force. Bipolar Disord. 2017;19(8):614626. doi:10.1111/bdi.12534.CrossRefGoogle ScholarPubMed
Petersen, JZ, Porter, RJ, Miskowiak, KW. Clinical characteristics associated with the discrepancy between subjective and objective cognitive impairment in depression. J Affect Disord. 2019;246:763774.CrossRefGoogle ScholarPubMed
Hohman, TJ, Beason-Held, LL, Lamar, M, Resnick, SM. Subjective cognitive complaints and longitudinal changes in memory and brain function. Neuropsychology. 2011;25(1):125130.CrossRefGoogle ScholarPubMed
Ott, C. The effect of erythropoietin on cognition in affective disorders—associations with baseline deficits and change in subjective cognitive complaints. Published online July 15, 2016. doi:10.26226/morressier.5785edc9d462b80296c99855.CrossRefGoogle Scholar
Aimone, JB, Wiles, J, Gage, FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci. 2006;9(6):723727. doi:10.1038/nn1707.CrossRefGoogle ScholarPubMed
Torrent, C, Martinez-Arán, A, del Mar Bonnin, C, et al. Long-term outcome of cognitive impairment in bipolar disorder. J Clin Psychiatry. 2012;73(7):e899e905.CrossRefGoogle ScholarPubMed
Goldberg, TE, Gold, JM, Greenberg, R, et al. Contrasts between patients with affective disorders and patients with schizophrenia on a neuropsychological test battery. Am J Psychiatry. 1993;150(9):13551362.Google ScholarPubMed
McIntyre, RS, Best, MW, Bowie, CR, et al. The THINC-Integrated Tool (THINC-it) screening assessment for cognitive dysfunction: validation in patients with major depressive disorder. J Clin Psychiatry. 2017;78(7):873881.CrossRefGoogle ScholarPubMed
Harrison, JE, Barry, H, Baune, BT, et al. Stability, reliability, and validity of the THINC-it screening tool for cognitive impairment in depression: a psychometric exploration in healthy volunteers. Int J Methods Psychiatr Res. 2018;27(3):e1736.CrossRefGoogle ScholarPubMed
McIntyre, RS, Subramaniapillai, M, Park, C, et al. The THINC-it tool for cognitive assessment and measurement in major depressive disorder: sensitivity to change. Front Psychiatry. 2020;11:546.CrossRefGoogle ScholarPubMed
Jensen, JH, Knorr, U, Vinberg, M, Kessing, LV, Miskowiak, KW. Discrete neurocognitive subgroups in fully or partially remitted bipolar disorder: associations with functional abilities. J Affect Disord. 2016;205:378386.CrossRefGoogle ScholarPubMed
Reger, MA, Watson, GS, Frey 2nd WH, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451458.CrossRefGoogle ScholarPubMed
Wakhloo, D, Scharkowski, F, Curto, Y, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020;11(1):1313.CrossRefGoogle ScholarPubMed
Bearden, CE, Hoffman, KM, Cannon, TD. The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord. 2001;3(3):106150. doi:10.1034/j.1399-5618.2001.030302.x.CrossRefGoogle ScholarPubMed
Gupta, R, Goyal, P, Ranjan, R, Kumaran, S, Sagar, R. A functional neuroimaging investigation of brain pathways involved in patients during active mania using stroop colour word test. Eur Psychiatry. 2016;33:S232S233. https://www.infona.pl/resource/bwmeta1.element.elsevier-9b125571-3de9-3cbf-8ccf-170252071592.Google Scholar
Gupta, R, Goyal, P, Ranjan, R, Kumaran, S, Sagar, R. An fMRI study in patients with active mania using verbal n-back test. Eur Psychiatry. 2016;33:S405.Google Scholar
Chang, YH, Wang, TY, Lee, SY, et al. Memory impairment and plasma BDNF correlates of the BDNF Val66Met polymorphism in patients with bipolar II disorder. Front Genet. 2018;9:583.CrossRefGoogle ScholarPubMed
Dias, VV, Brissos, S, Frey, BN, Andreazza, AC, Cardoso, C, Kapczinski, F. Cognitive function and serum levels of brain-derived neurotrophic factor in patients with bipolar disorder. Bipolar Disord. 2009;11(6):663671.CrossRefGoogle ScholarPubMed
Doganavsargil-Baysal, O, Cinemre, B, Aksoy, UM, et al. Levels of TNF-α, soluble TNF receptors (sTNFR1, sTNFR2), and cognition in bipolar disorder. Human Psychopharmacol: Clin Exp. 2013;28(2):160167. doi:10.1002/hup.2301.CrossRefGoogle Scholar
Lotrich, FE, Butters, MA, Aizenstein, H, Marron, MM, Reynolds 3rd CF, Gildengers AG. The relationship between interleukin-1 receptor antagonist and cognitive function in older adults with bipolar disorder. Int J Geriatr Psychiatry. 2014;29(6):635644.CrossRefGoogle ScholarPubMed
Aydemir, Ö, Çubukçuoğlu, Z, Erdin, S, Taş, C, Onur, E, Berk, M. Oxidative stress markers, cognitive functions, and psychosocial functioning in bipolar disorder: an empirical cross-sectional study. Revista Brasileira de Psiquiatria. 2014;36(4):293297. doi:10.1590/1516-4446-2013-1299.CrossRefGoogle Scholar
Kucyi, A, Alsuwaidan, MT, Liauw, SS, McIntyre, RS. Aerobic physical exercise as a possible treatment for neurocognitive dysfunction in bipolar disorder. Postgrad Med. 2010;122(6):107116.CrossRefGoogle ScholarPubMed
Goss, AJ, Kaser, M, Costafreda, SG, Sahakian, BJ, Fu, CHY. Modafinil augmentation therapy in unipolar and bipolar depression: a systematic review and meta-analysis of randomized controlled trials. J Clin Psychiatry. 2013;74(11):11011107.CrossRefGoogle ScholarPubMed
Minzenberg, MJ, Carter, CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology. 2008;33(7):14771502.CrossRefGoogle ScholarPubMed
Wood, S, Sage, JR, Shuman, T, Anagnostaras, SG. Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol Rev. 2014;66(1):193221.CrossRefGoogle ScholarPubMed
Shi, S, Li, L, Song, L, Wang, X. Effect of lamotrigine on cognitive function and serum inflammatory factors in patients with depression of recurrent bipolar disorder. Pak J Pharm Sci. 2018;31(6[Special]):27752778.Google ScholarPubMed
McIntyre, RS, Lophaven, S, Olsen, CK. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol. 2014;17(10):15571567.CrossRefGoogle ScholarPubMed
McIntyre, RS, Florea, I, Tonnoir, B, Loft, H, Lam, RW, Christensen, MC. Efficacy of vortioxetine on cognitive functioning in working patients with major depressive disorder. J Clin Psychiatry. 2017;78(1):115121.CrossRefGoogle ScholarPubMed
McIntyre, RS, Berk, M, Brietzke, E, et al. Bipolar disorders. Lancet. 2020;396(10265):18411856.CrossRefGoogle ScholarPubMed
McIntyre, RS, Cha, DS, Soczynska, JK, et al. Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress Anxiety. 2013;30(6):515527.CrossRefGoogle ScholarPubMed