Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T00:54:24.738Z Has data issue: false hasContentIssue false

The dynamical importance of binary systems in young massive star clusters

Published online by Cambridge University Press:  31 March 2017

Richard de Grijs
Affiliation:
Kavli Institute for Astronomy & Astrophysics and Department of Astronomy, Peking University, Beijing, China email: grijs@pku.edu.cn
Chengyuan Li
Affiliation:
Kavli Institute for Astronomy & Astrophysics and Department of Astronomy, Peking University, Beijing, China email: grijs@pku.edu.cn Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China
Aaron M. Geller
Affiliation:
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than 0.5M are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster’s stellar distribution. However, close encounters involving binary systems may disrupt ‘soft’ binaries. This process will occur more frequently in a cluster’s central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope observations, combined with sophisticated N-body simulations, we investigate the radial distributions of the main-sequence binary fractions in massive young Large Magellanic Cloud star clusters. We show that binary disruption may play an important role on very short timescales, depending on the environmental conditions in the cluster cores. This may lead to radial binary fractions that initially decline in the cluster centers, which is contrary to the effects expected from dynamical mass segregation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, MNRAS, 395, 1449 Google Scholar
Allison, R. J., Goodwin, S. P., Parker, R. J., Portegies Zwart, S. F., & de Grijs, R. 2010, MNRAS, 407, 1098 Google Scholar
Binney, J. & Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton Univ. Press)Google Scholar
de Grijs, R., Johnson, R. A., Gilmore, G. F., & Frayn, C. M. 2002a, MNRAS, 331, 228 CrossRefGoogle Scholar
de Grijs, R., Gilmore, G. F., Johnson, R. A., & Mackey, A. D. 2002b, MNRAS, 331, 245 Google Scholar
de Grijs, R., Li, C., Zheng, Y., et al. 2013, ApJ, 765, 4 Google Scholar
de Grijs, R., Wicker, J. E., & Bono, G. 2014, AJ, 147, 122 Google Scholar
de Grijs, R. & Bono, G. 2015, AJ, 149, 179 Google Scholar
Elson, R. A. W., Sigurdsson, S., Davies, M., Hurley, J., & Gilmore, G. 1998, MNRAS, 300, 857 Google Scholar
Ferraro, F. R., Lanzoni, B., Dalessandro, E., et al. 2012, Nature, 492, 393 CrossRefGoogle Scholar
Geller, A. M., de Grijs, R., Li, C., & Hurley, J. R. 2013, ApJ, 779, 30 CrossRefGoogle Scholar
Geller, A. M., de Grijs, R., Li, C., & Hurley, J. R. 2015, ApJ, 805, 11 Google Scholar
Goodwin, S. P. & Whitworth, A. P. 2004, A&A, 413, 929 Google Scholar
Goodwin, S. P., Whitworth, A. P., & Ward-Thompson, D. 2004a, A&A, 414, 633 Google Scholar
Goodwin, S. P., Whitworth, A. P., & Ward-Thompson, D. 2004b, A&A, 423, 169 Google Scholar
Hu, Y., Deng, L., de Grijs, R., Liu, Q., & Goodwin, S. P. 2010, ApJ, 724, 649 Google Scholar
Kobulnicky, H. A., Kiminki, D. C., Lundquist, M. J., et al. 2014, ApJS, 213, 34 Google Scholar
Kouwenhoven, M. B. N., Brown, A. G. A., Zinnecker, H., Kaper, L., & Portegies Zwart, S. F. 2005, A&A, 430, 137 Google Scholar
Leigh, N. & Sills, A. 2011, MNRAS, 410, 2370 Google Scholar
Li, C., de Grijs, R., Deng, L., & Liu, X. 2013a, ApJL, 770, L7 Google Scholar
Li, C., de Grijs, R., & Deng, L. 2013b, MNRAS, 436, 1497 Google Scholar
Mackey, A. D., & Gilmore, G. F. 2003, MNRAS, 338, 85 Google Scholar
Mapelli, M., Sigurdsson, S., Colpi, M., et al. 2004, ApJL, 605, L29 Google Scholar
Mason, B. D., Henry, T. J., Hartkopf, W. I., ten Brummelaar, T., & Soderblom, D. R. 1998, AJ, 116, 2975 Google Scholar
Milone, A. P., Piotto, G., King, I. R., et al. 2010, ApJ, 709, 1183 Google Scholar
Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, ApJS, 190, 1 Google Scholar
Sana, H. & Evans, C. J. 2011, IAU Symp., 272, 474 Google Scholar
Sana, H., James, G., & Gosset, E. 2011, MNRAS, 416, 817 Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012a, Science, 337, 444 Google Scholar
Sana, H., Dunstall, P. R., Hénault-Brunet, V., et al. 2012b, in: Proc. Scient. Mtg in Honor of Anthony F. J. Moffat, ASP Conf. Ser. 465, 284Google Scholar
Schneider, F. R. N., Izzard, R. G., de Mink, S. E., et al. 2014, ApJ, 780, 117 Google Scholar