Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T22:21:36.742Z Has data issue: false hasContentIssue false

23 - The effect of global dynamical factors on the interannual variability of land-based rainfall

from Part V - Ocean connections

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashok, K., Behera, S. K., Rao, S.A., Weng, H., and Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, doi:10.1029/2006JC003798, 2007.CrossRefGoogle Scholar
Ashok, K., Guan, Z., and Yamagata, T. (2003). Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Let. 30, 1821, doi:10.1029/2003GL017926, 15.CrossRefGoogle Scholar
Baines, P. G. (2011). Patterns of decadal climate variability and their impact on global rainfall. Earth System Science 2010: Global Change, Climate and People, Edinburgh; Procedia Environmental Sciences 6, 7087, S. Cornell, C. Downy and M. Rounsevell eds..CrossRefGoogle Scholar
Baldwin, M. P. and 14 others, (2001). The quasi-biennial oscillation, Rev. Geophys. 39, 179229.CrossRefGoogle Scholar
Broecker, W. S. (2010). The Great Ocean Conveyor, Discovering the Trigger for Abrupt Climate Change, Princeton University Press.CrossRefGoogle Scholar
Brönnimann, S., Annis, J. L., Vogler, C., and Jones, P. D. (2007). Reconstructing the quasi-biennial oscillation back to the early 1900s. Geophys. Res. Let. 34, L22805, doi: 10.1029/2007GL031354.CrossRefGoogle Scholar
Davis, R. E. (1976). Predictability of sea-surface temperature and sea-level pressure anomalies over North Pacific Ocean. J. Phys. Oceanog. 6, 249266.2.0.CO;2>CrossRefGoogle Scholar
Di Lorenzo, E. and 11 others, (2008). North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35, L08607, doi:10.1029/2007GL032838.CrossRefGoogle Scholar
Drosdowsky, W. and Chambers, L. E. (2001). Near-global sea surface temperature anomalies as predictors of Australian seasonal rainfall. 2001 J. Clim. 14, 16771687.2.0.CO;2>CrossRefGoogle Scholar
Ghil, M. and 16 others, (2011). Extreme events: dynamics, statistics and prediction. Nonlin. Processes Geophys., 18, 295350.CrossRefGoogle Scholar
Gray, L. J. and 14 others, (2010). Solar influences on climate, Rev. Geophys. 48, doi: 10.1029/2009RG000282.CrossRefGoogle Scholar
Hurst, H. E. (1951). Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil Eng., 116, 770799.CrossRefGoogle Scholar
Jones, D. A., Wang, W., and Fawcett, R. (2009). High quality spatial climate data-sets for Australia, Aust. Met. Oceanog. J. 59, 233249.Google Scholar
Jones, D. A., Fogt, R. L., Widmann, M, et al. (2009). Historical SAM variability. Part I: Century-length seasonal reconstructions. J. Clim. 22, 53195345.CrossRefGoogle Scholar
Kug, J.-S., Jin, F.-F., and An, S.-I. (2009). Two types of El Niño events: Cold Tongue El Niño and Warm Pool El Niño. J. Climate 22, 14991515.CrossRefGoogle Scholar
Marshall, G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. J. Clim., 16, 41344143.2.0.CO;2>CrossRefGoogle Scholar
McBride, J. L. and Nichols, N. (1983). Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev. 111(10), 19982004.2.0.CO;2>CrossRefGoogle Scholar
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H. (2009). Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science, 325, 11141118, doi:10.1126/science.1172872.CrossRefGoogle ScholarPubMed
Meneghini, B., Simmonds, I., and Smith, I. N. (2007). Association between Australian rainall and the Southern Annular Mode. J. Climatol. 27, 100121.CrossRefGoogle Scholar
Parker, D., Folland, C., Scaife, A., et al. (2007). Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.CrossRefGoogle Scholar
Pittock, A. B. (1978). A critical look at long-term Sun-weather relationships. Rev. Geophys. 16, 400420.CrossRefGoogle Scholar
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn. 15, 319324.CrossRefGoogle Scholar
Prentice, C., Baines, P. G., Scholze, M., and Wooster, M. J. (2012). Fundamentals of climate change science. Chapter 2 of Understanding the Earth System – Global Change Science for Application. Cornell, S. E., Prentice, I. C., House, J. I and Downy, C. J. eds., Cambridge University Press, 267 pp.Google Scholar
Risbey, J. S., Pook, M. J., McIntosh, P. C.,Wheeler, M. C., and Hendon, H. H. (2009). On the remote drivers of rainfall variability in Australia, Mon. Wea. Rev. 137(10), 32333253.CrossRefGoogle Scholar
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J. (2008). Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880–2006). Journal of Climate, 21, 22832296.CrossRefGoogle Scholar
Trenberth, K. E. and Stepaniak, D. P. (2001). Indices of El Niño evolution. J. Climate, 14, 16971701.2.0.CO;2>CrossRefGoogle Scholar
Vernier, J.-P., et al., (2011). Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38, L12807, doi:10.1029/2011GL047563.CrossRefGoogle Scholar
von Storch, H. and Zwiers, F. W. (2001). Statistical Analysis in Climate Research, Cambridge University Press, 484 pp.Google Scholar
Whiting, J. P., Lambert, M. F., and Metcalfe, A. V. (2003). Modelling persistence in annual Australian point rainfall, Hydr. & Earth System Sci. 7, 197211.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×