Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T05:57:49.790Z Has data issue: false hasContentIssue false

Revisiting the law of the wake in wall turbulence

Published online by Cambridge University Press:  13 December 2016

Dominik Krug*
Affiliation:
Department of Mechanical Engineering, The University of Melbourne, Victoria 3010, Australia
Jimmy Philip
Affiliation:
Department of Mechanical Engineering, The University of Melbourne, Victoria 3010, Australia
Ivan Marusic
Affiliation:
Department of Mechanical Engineering, The University of Melbourne, Victoria 3010, Australia
*
Email address for correspondence: dominik.krug@unimelb.edu.au

Abstract

The streamwise mean velocity profile in a turbulent boundary layer is classically described as the sum of a log law extending all the way to the edge of the boundary layer and a wake function. While there is theoretical support for the log law, the wake function, defined as the deviation of the measured velocity profile from the log law, is essentially an empirical fit and has no real physical underpinning. Here, we present a new physically motivated formulation of the velocity profile in the outer region, and hence for the wake function. In our approach, the entire flow is represented by a two-state model consisting of an inertial self-similar region designated as ‘pure wall flow state’ (featuring a log-law velocity distribution) and a free stream state, which results in a jump in velocity at the interface separating the two. We show that the model provides excellent agreement with the available high Reynolds number mean velocity profiles if this interface is assumed to fluctuate randomly about a mean position with a Gaussian distribution. The new concept can also be extended to internal geometries in the same form, again confirmed by the data. Furthermore, adopting the same interface distribution in a two-state model for the streamwise turbulent intensities, with unchanged parameters, also yields a reliable and consistent prediction for the decline in the outer region of these profiles in all geometries considered. Finally, we discuss differences between our model interface and the turbulent/non-turbulent interface (TNTI) in turbulent boundary layers. We physically interpret the two-state model as lumping the effects of internal shear layers and the TNTI into a single discontinuity at the interface.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Chauhan, K. A., Monkewitz, P. A. & Nagib, H. M. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41 (2), 021404.CrossRefGoogle Scholar
Chauhan, K. A. & Nagib, H. M. 2008 On the development of wall-bounded turbulent flows. In IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, pp. 183189. Springer.CrossRefGoogle Scholar
Chauhan, K., Philip, J. & Marusic, I. 2014a Scaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 751, 298328.CrossRefGoogle Scholar
Chauhan, K., Philip, J., de Silva, C. M., Hutchins, N. & Marusic, I. 2014b The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.CrossRefGoogle Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (02), 191226.CrossRefGoogle Scholar
Dean, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME J. Fluids Engng 100 (2), 215223.CrossRefGoogle Scholar
Eisma, J., Westerweel, J., Ooms, G. & Elsinga, G. E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 055103.CrossRefGoogle Scholar
Furuichi, N., Terao, Y., Wada, Y. & Tsuji, Y. 2015 Friction factor and mean velocity profile for pipe flow at high Reynolds numbers. Phys. Fluids 27 (9), 095108.CrossRefGoogle Scholar
Granville, P. S. 1976 A modified law of the wake for turbulent shear layers. Trans. ASME J. Fluids Engng 98 (3), 578580.CrossRefGoogle Scholar
Hultmark, M. 2012 A theory for the streamwise turbulent fluctuations in high Reynolds number pipe flow. J. Fluid Mech. 707, 575584.CrossRefGoogle Scholar
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 094501.CrossRefGoogle ScholarPubMed
Ishihara, T., Kaneda, Y. & Hunt, J. C. R. 2013 Thin shear layers in high Reynolds number turbulence – DNS results. Flow Turbul. Combust. 91 (4), 895929.CrossRefGoogle Scholar
Kwon, Y. S.2016. The quiescent core of turbulent channel and pipe flows. PhD thesis, The University of Melbourne.Google Scholar
Kwon, Y. S., Hutchins, N. & Monty, J. P. 2016 On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J. Fluid Mech. 794, 516.CrossRefGoogle Scholar
Kwon, Y. S., Philip, J., de Silva, C. M., Hutchins, N. & Monty, J. P. 2014 The quiescent core of turbulent channel flow. J. Fluid Mech. 751, 228254.CrossRefGoogle Scholar
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lewkowicz, A. K. 1982 An improved universal wake function for turbulent boundary layers and some of its consequences. Z. Flugwiss. Weltraumforsch. 6, 261266.Google Scholar
Marusic, I., Chauhan, K. A., Kulandaivelu, V. & Hutchins, N. 2015 Evolution of zero-pressure-gradient boundary layers from different tripping conditions. J. Fluid Mech. 783, 379411.CrossRefGoogle Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Monkewitz, P. A., Chauhan, K. A. & Nagib, H. M. 2007 Self-consistent high-reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys. Fluids 19 (11), 115101.CrossRefGoogle Scholar
Monkewitz, P. A. & Nagib, H. M. 2015 Large-Reynolds-number asymptotics of the streamwise normal stress in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 783, 474503.CrossRefGoogle Scholar
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.CrossRefGoogle Scholar
Nagib, H. M. & Chauhan, K. A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 1518.CrossRefGoogle Scholar
Schultz, M. P. & Flack, K. A. 2013 Reynolds-number scaling of turbulent channel flow. Phys. Fluids 25 (2), 025104.CrossRefGoogle Scholar
de Silva, C. M., Hutchins, N. & Marusic, I. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.CrossRefGoogle Scholar
Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.CrossRefGoogle Scholar
Townsend, A. A. R. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar