Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T13:12:59.777Z Has data issue: false hasContentIssue false

Direct measurement of selective evaporation of binary mixture droplets by dissolving materials

Published online by Cambridge University Press:  10 July 2018

Hyoungsoo Kim*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Department of Mechanical Engineering, KAIST, Daejeon 34141, South Korea
Howard A. Stone
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: hshk@kaist.ac.kr

Abstract

We investigate experimentally and theoretically how a droplet of a binary mixture evaporates when placed on a solid substrate. Our focus is the limit at which the two liquid components have different vapour pressures. Using physicochemical effects, we directly visualize the selective evaporation of the more volatile component and so document the space and time dependence of the chemical distribution in the droplet. In particular, we observe that a mixture consisting of an organic solvent and deionized water dissolves suspended fluorescent polystyrene particles if the lower volatility organic solvent reaches a critical concentration. Consequently, we show that for a small contact angle ($\unicode[STIX]{x1D703}<\unicode[STIX]{x03C0}/2$) the suspended polystyrene particles begin to disappear from near the contact line, which indicates that the volatile component, here water, evaporates rapidly compared to the other component(s). Finally, we show that a diffusion-dominated model for evaporation of a binary mixture can predict well the experimental results where convective and diffusive mixing effects are negligible, in which case there is significant chemical segregation in the drop.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahmani, L., Neysari, M. & Maleki, M. 2017 The study of drying and pattern formation of whole human blood drops and the effect of thalassaemia and neonatal jaundice on the patterns. Colloids Surf. A 513, 6675.Google Scholar
Bennacer, R. & Sefiane, K. 2014 Vortices, dissipation and flow transition in volatile binary drops. J. Fluid Mech. 749, 649665.Google Scholar
Brutin, D., Sobac, B., Loquet, B. & Sampol, J. 2011 Pattern formation in drying drops of blood. J. Fluid Mech. 667, 8595.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62 (1), 756765.Google Scholar
Diddens, C., Kuerten, J. G. M., van der Geld, C. W. M. & Wijshoff, H. M. A. 2017a Modeling the evaporation of sessile multi-component droplets. J. Colloid Interface Sci. 487, 426436.Google Scholar
Diddens, C., Tan, H., Lv, P., Versluis, M., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2017b Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. J. Fluid Mech. 823, 470497.Google Scholar
Dixit, S., Crain, J., Poon, W. C. K., Finney, J. L. & Soper, A. K. 2002 Molecular segregation observed in a concentrated alcohol–water solution. Nature 416 (6883), 829832.Google Scholar
Dugas, V., Broutin, J. & Souteyrand, E. 2005 Droplet evaporation study applied to DNA chip manufacturing. Langmuir 21 (20), 91309136.Google Scholar
de Gans, B.-J., Duineveld, P. C. & Schubert, U. S. 2004 Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16 (3), 203213.Google Scholar
Guo, J.-H., Luo, Y., Augustsson, A., Kashtanov, S., Rubensson, J.-E., Shuh, D. K., Ågren, H. & Nordgren, J. 2003 Molecular structure of alcohol–water mixtures. Phys. Rev. Lett. 91 (15), 157401.Google Scholar
Harreus, A. L., Backes, R., Eichler, J., Feuerhake, R., Jaekel, C., Mahn, U., Pinkos, R. & Vogelsang, R. 2000 2-pyrrolidone. Ullmanns Encyclopedia of Industrial Chemistry. Wiley.Google Scholar
Hu, H. & Larson, R. G. 2005 Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21 (9), 39633971.Google Scholar
Jodai, Y. & Elsinga, G. E. 2016 Experimental observation of hairpin auto-generation events in a turbulent boundary layer. J. Fluid Mech. 795, 611633.Google Scholar
Karpitschka, S., Liebig, F. & Riegler, H. 2017 Marangoni contraction of evaporating sessile droplets of binary mixtures. Langmuir 33 (19), 46824687.Google Scholar
Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E. & Stone, H. A. 2016 Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116 (12), 124501.Google Scholar
Kim, H., Große, S., Elsinga, G. E. & Westerweel, J. 2011 Full 3D-3C velocity measurement inside a liquid immersion droplet. Exp. Fluids 51 (2), 395405.Google Scholar
Kong, Y. L., Tamargo, I. A., Kim, H., Johnson, B. N., Gupta, M. K., Koh, T.-W., Chin, H.-A., Steingart, D. A., Rand, B. P. & McAlpine, M. C. 2014 3D printed quantum dot light-emitting diodes. Nano Lett. 14 (12), 70177023.Google Scholar
Kuang, M., Wang, L. & Song, Y. 2014 Controllable printing droplets for high-resolution patterns. Adv. Mater. 26 (40), 69506958.Google Scholar
Li, Y., Lv, P., Diddens, C., Tan, H., Wijshoff, H., Versluis, M. & Lohse, D. 2018 Evaporation-triggered segregation of sessile binary droplets. Phys. Rev. Lett. 120 (22), 224501.Google Scholar
Marín, Á. G., Gelderblom, H., Lohse, D. & Snoeijer, J. H. 2011 Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107 (8), 085502.Google Scholar
Mishra, S., Barton, K. L., Alleyne, A. G., Ferreira, P. M. & Rogers, J. A. 2010 High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. J. Micromech. Microengng 20 (9), 095026.Google Scholar
Park, J. & Moon, J. 2006 Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22 (8), 35063513.Google Scholar
Park, S. J., Weon, B. M., Lee, J. S., Lee, J., Kim, J. & Je, J. H. 2014 Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat. Commun. 5, 4369.Google Scholar
Paul, K. E., Wong, W. S., Ready, S. E. & Street, R. A. 2003 Additive jet printing of polymer thin-film transistors. Appl. Phys. Lett. 83 (10), 20702072.Google Scholar
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.Google Scholar
Ruggeri, F., Zosel, F., Mutter, N., Różycka, M., Wojtas, M., Ożyhar, A., Schuler, B. & Krishnan, M. 2017 Single-molecule electrometry. Nat. Nanotech. 12 (5), 488495.Google Scholar
Sáenz, P. J., Wray, A. W., Che, Z., Matar, O. K., Valluri, P., Kim, J. & Sefiane, K. 2017 Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat. Commun. 8, 14783.Google Scholar
Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. & Woo, E. P. 2000 High-resolution inkjet printing of all-polymer transistor circuits. Science 290 (5499), 21232126.Google Scholar
Talbot, E. L., Yow, H. N., Yang, L., Berson, A., Biggs, S. R. & Bain, C. D. 2015 Printing small dots from large drops. ACS Appl. Mater. Interfaces 7 (6), 37823790.Google Scholar
Tan, H., Diddens, C., Lv, P., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proc. Natl Acad. Sci. USA 113 (31), 86428647.Google Scholar
Thielicke, W. & Stamhuis, E. 2014 PIVlab: towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2 (1).Google Scholar

Kim and Stone supplementary movie 1

Evaporation of a binary mixture (water:1M2P - 30:70 wt. %) droplet containing fluorescent particles

Download Kim and Stone supplementary movie 1(Video)
Video 52.9 MB

Kim and Stone supplementary movie 2

Defocused particles image in the evaporating binary mixture (water:1M2P - 30:70 wt. %) droplet

Download Kim and Stone supplementary movie 2(Video)
Video 3.8 MB