Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-27T20:11:48.945Z Has data issue: false hasContentIssue false

Advective structure functions in anisotropic two-dimensional turbulence

Published online by Cambridge University Press:  19 April 2021

Brodie C. Pearson*
Affiliation:
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR97331, USA
Jenna L. Pearson
Affiliation:
Department of Geosciences, Princeton University, Princeton, NJ08544, USA
Baylor Fox-Kemper
Affiliation:
Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI02912, USA
*
Email address for correspondence: brodie.pearson@oregonstate.edu

Abstract

In inertial-range turbulence, structure functions can diagnose transfer or dissipation rates of energy and enstrophy, which are difficult to calculate directly in flows with complex geometry or sparse sampling. However, existing relations between third-order structure functions and these rates only apply under isotropic conditions. We propose new relations to diagnose energy and enstrophy dissipation rates in anisotropic two-dimensional (2-D) turbulence. These relations use second-order advective structure functions that depend on spatial increments of vorticity, velocity, and their advection. Numerical simulations of forced-dissipative anisotropic 2-D turbulence are used to compare new and existing relations against model-diagnosed dissipation rates of energy and enstrophy. These simulations permit a dual cascade where forcing is applied at an intermediate scale, energy is dissipated at large scales, and enstrophy is dissipated at small scales. New relations to estimate energy and enstrophy dissipation rates show improvement over existing methods through increased accuracy, insensitivity to sampling direction, and lower temporal and spatial variability. These benefits of advective structure functions are present under weakly anisotropic conditions, and increase with the flow anisotropy as third-order structure functions become increasingly inappropriate. Several of the structure functions also show promise for diagnosing the forcing scale of 2-D turbulence. Velocity-based advective structure functions show particular promise as they can diagnose both enstrophy and energy cascade rates, and are robust to changes in the effective resolution of local derivatives. Some existing and future datasets that are amenable to advective structure function analysis are discussed.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Augier, P., Galtier, S. & Billant, P. 2012 Kolmogorov laws for stratified turbulence. J. Fluid Mech. 709, 659670.Google Scholar
Bakas, N.A., Constantinou, N.C. & Ioannou, P.J. 2019 Statistical state dynamics of weak jets in barotropic beta-plane turbulence. J. Atmos. Sci. 76 (3), 919945.Google Scholar
Balwada, D., LaCasce, J.H. & Speer, K.G. 2016 Scale-dependent distribution of kinetic energy from surface drifters in the Gulf of Mexico. Geophys. Res. Lett. 43 (20), 1085610863.CrossRefGoogle Scholar
Banerjee, S. & Galtier, S. 2016 An alternative formulation for exact scaling relations in hydrodynamic and magnetohydrodynamic turbulence. J. Phys. A: Math. Theor. 50 (1), 015501.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44 (1), 427451.CrossRefGoogle Scholar
Boffetta, G. & Musacchio, S. 2010 Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82 (1), 016307.CrossRefGoogle ScholarPubMed
Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P. 2014 Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 26 (12), 125112.CrossRefGoogle Scholar
Capet, X., McWilliams, J.C., Molemaker, M.J. & Shchepetkin, A.F. 2008 Mesoscale to submesoscale transition in the California current system: Part III: energy balance and flux. J. Phys. Oceanogr. 38 (10), 22562269.CrossRefGoogle Scholar
Cerbus, R.T. & Chakraborty, P. 2017 The third-order structure function in two dimensions: the Rashomon effect. Phys. Fluids 29 (11), 111110.CrossRefGoogle Scholar
Chang, H., et al. 2019 Small-scale dispersion in the presence of Langmuir circulation. J. Phys. Oceanogr. 49 (12), 30693085.CrossRefGoogle Scholar
Charney, J.G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871095.2.0.CO;2>CrossRefGoogle Scholar
Chen, S., Ecke, R.E., Eyink, G.L., Wang, X. & Xiao, Z. 2003 Physical mechanism of the two-dimensional enstrophy cascade. Phys. Rev. Lett. 91 (21), 214501.CrossRefGoogle ScholarPubMed
Cho, J.Y.N. & Lindborg, E. 2001 Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 1. Observations. J. Geophys. Res.: Atmos. 106 (D10), 1022310232.CrossRefGoogle Scholar
Constantinou, N.C., Wagner, G.L., Pearson, B., Karrasch, D. & TagBot, J. 2020 Fourierflows/geophysicalflows.jl: v0.8.0.Google Scholar
Danilov, S. & Gryanik, V.M. 2004 Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci. 61 (18), 22832295.2.0.CO;2>CrossRefGoogle Scholar
Deusebio, E., Augier, P. & Lindborg, E. 2014 Third-order structure functions in rotating and stratified turbulence: a comparison between numerical, analytical and observational results. J. Fluid Mech. 755, 294313.CrossRefGoogle Scholar
Duchon, J. & Robert, R. 2000 Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13 (1), 249255.Google Scholar
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P.L., Yamazaki, Y.H. & Wordsworth, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a $\beta$-effect. Nonlin. Proc. Geophys. 13 (1), 8398.CrossRefGoogle Scholar
Galtier, S. 2009 a Exact vectorial law for axisymmetric magnetohydrodynamics turbulence. Astrophys. J. 704 (2), 1371.CrossRefGoogle Scholar
Galtier, S. 2009 b Exact vectorial law for homogeneous rotating turbulence. Phys. Rev. E 80 (4), 046301.CrossRefGoogle ScholarPubMed
Galtier, S. 2011 Third-order Elsässer moments in axisymmetric MHD turbulence. C. R. Phys. 12 (2), 151159.CrossRefGoogle Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J.C. 2015 The energy cascade in near-field non-homogeneous non-isotropic turbulence. J. Fluid Mech. 771, 676705.CrossRefGoogle Scholar
Khatri, H., Sukhatme, J., Kumar, A. & Verma, M.K. 2018 Surface ocean enstrophy, kinetic energy fluxes, and spectra from satellite altimetry. J. Geophys. Res. 123 (5), 38753892.CrossRefGoogle Scholar
Kolmogorov, A.N. 1991 Dissipation of energy in the locally isotropic turbulence. Proc. R. Soc. Lond. A 434 (1890), 1517.Google Scholar
Kong, H. & Jansen, M.F. 2017 The eddy diffusivity in barotropic $\beta$-plane turbulence. Fluids 2 (4), 54.CrossRefGoogle Scholar
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.CrossRefGoogle Scholar
LaCasce, J.H. 2008 Statistics from Lagrangian observations. Prog. Oceanogr. 77 (1), 129.CrossRefGoogle Scholar
Lamriben, C., Cortet, P.-P. & Moisy, F. 2011 Direct measurements of anisotropic energy transfers in a rotating turbulence experiment. Phys. Rev. Lett. 107 (2), 024503.CrossRefGoogle Scholar
Lindborg, E. 1996 A note on Kolmogorov's third-order structure-function law, the local isotropy hypothesis and the pressure–velocity correlation. J. Fluid Mech. 326, 343356.CrossRefGoogle Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.CrossRefGoogle Scholar
Lindborg, E. 2015 A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech. 762, R4.Google Scholar
Lindborg, E. & Cho, J.Y.N. 2001 Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 2. Theoretical considerations. J. Geophys. Res. 106 (D10), 1023310241.CrossRefGoogle Scholar
Nie, Q. & Tanveer, S. 1999 A note on third-order structure functions in turbulence. Proc. R. Soc. Lond. A 455 (1985), 16151635.Google Scholar
Ohlmann, J.C., Molemaker, M.J., Baschek, B., Holt, B., Marmorino, G. & Smith, G. 2017 Drifter observations of submesoscale flow kinematics in the coastal ocean. Geophys. Res. Lett. 44 (1), 330337.CrossRefGoogle Scholar
Pearson, B., Fox-Kemper, B., Bachman, S. & Bryan, F. 2017 Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Model. 115, 4258.CrossRefGoogle Scholar
Pearson, B.C. & Fox-Kemper, B. 2018 Log-normal turbulence dissipation in global ocean models. Phys. Rev. Lett. 120 (9), 094501.Google ScholarPubMed
Pearson, J., Fox-Kemper, B., Barkan, R., Choi, J., Bracco, A. & McWilliams, J.C. 2019 Impacts of convergence on structure functions from surface drifters in the Gulf of Mexico. J. Phys. Oceanogr. 49 (3), 675690.CrossRefGoogle Scholar
Pearson, J., Fox-Kemper, B., Pearson, B., Chang, H., Haus, B.K., Horstmann, J., Huntley, H.S., Kirwan, A.D. Jr., Lund, B. & Poje, A. 2020 Biases in structure functions from observations of submesoscale flows. J. Geophys. Res. 125 (6), e2019JC015769.Google Scholar
Podesta, J.J., Forman, M.A., Smith, C.W., Elton, D.C., Malécot, Y. & Gagne, Y. 2009 Accurate estimation of third-order moments from turbulence measurements. Nonlinear Process. Geophys. 16 (1), 99.CrossRefGoogle Scholar
Podesta, J.J. 2008 Laws for third-order moments in homogeneous anisotropic incompressible magnetohydrodynamic turbulence. J. Fluid Mech. 609, 171194.CrossRefGoogle Scholar
Poje, A.C., Özgökmen, T.M., Bogucki, D.J. & Kirwan, A.D. 2017 Evidence of a forward energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observations. Phys. Fluids 29 (2), 020701.Google Scholar
Provenzale, A. 1999 Transport by coherent barotropic vortices. Ann. Rev. Fluid Mech. 31 (1), 5593.CrossRefGoogle Scholar
Rhines, P.B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (3), 417443.CrossRefGoogle Scholar
Rhines, P.B. 1979 Geostrophic turbulence. Annu. Rev. Fluid Mech. 11 (1), 401441.CrossRefGoogle Scholar
Thompson, A.F. & Young, W.R. 2006 Scaling baroclinic eddy fluxes: vortices and energy balance. J. Phys. Oceanogr. 36 (4), 720738.Google Scholar
Valente, P.C. & Vassilicos, J.C. 2015 The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys. Fluids 27 (4), 045103.CrossRefGoogle Scholar
Xie, J.-H. 2020 Quantifying the linear damping in two-dimensional turbulence. Phys. Rev. Fluids 5 (9), 094605.CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2018 Exact third-order structure functions for two-dimensional turbulence. J. Fluid Mech. 851, 672686.CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2019 Third-order structure functions for isotropic turbulence with bidirectional energy transfer. J. Fluid Mech. 877, R3.CrossRefGoogle Scholar
Xu, H., Pumir, A., Falkovich, G., Bodenschatz, E., Shats, M., Xia, H., Francois, N. & Boffetta, G. 2014 Flight–crash events in turbulence. Proc. Natl Acad. Sci. USA 111 (21), 75587563.CrossRefGoogle ScholarPubMed
Yokoyama, N. & Takaoka, M. 2021 Energy-flux vector in anisotropic turbulence: Application to rotating turbulence. J. Fluid Mech. 908, A17.CrossRefGoogle Scholar
Young, R.M.B. & Read, P.L. 2017 Forward and inverse kinetic energy cascades in Jupiter's turbulent weather layer. Nat. Phys. 13 (11), 11351140.CrossRefGoogle Scholar
Zaron, E.D. & Rocha, C.B. 2018 Internal gravity waves and meso/submesoscale currents in the ocean: anticipating high-resolution observations from the SWOT Swath Altimeter Mission. Bull. Am. Meteorol. Soc. 99 (9), ES155ES157.CrossRefGoogle Scholar