Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-21T02:43:38.880Z Has data issue: false hasContentIssue false

Hydrodynamic trade-offs in potential swimming efficiency of planispiral ammonoids

Published online by Cambridge University Press:  09 January 2023

Kathleen Anita Ritterbush*
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A. E-mail: k.ritterbush@utah.edu, nicholas.hebdon@utah.edu
Nicholas Hebdon
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A. E-mail: k.ritterbush@utah.edu, nicholas.hebdon@utah.edu
*
*Corresponding author.

Abstract

Ammonoid cephalopods were Earth's most abundant oceanic carnivores for hundreds of millions of years, yet their probable range of swimming capabilities is poorly constrained. We investigate potential hydrodynamic costs and advantages provided by different conch geometries using computational fluid dynamics simulations. Simulations of raw drag demonstrate expected increases with velocity and conch inflation, consistent with published experimental data. Analysis at different scales of water turbulence (via Reynolds number) reveals dynamic trade-offs between conch shape, size, and velocity. Among compressed shells, the cost of umbilical exposure makes little difference at small sizes (and/or low velocity) but is profound at large sizes (and/or high velocity). We estimate that small ammonoids could travel one to three diameters per second (i.e., a typical ammonoid with a 5-cm-diameter shell could travel 5–15 cm/s), but that large ammonoids faced greater discrepancies (a 10 cm serpenticone likely traveled <30 cm/s, while a 10 cm oxycone might achieve >40 cm/s). All of these velocities are proposed only for short bursts of jet propulsion, lasting only a few seconds, in the service of dodging a predator or conspecific rival. These analyses do not include phylogeny, taxonomy, second-order conch architecture (ribs, ornament, etc.), or hydrostatic consequences of internal anatomy (soft body, suture complexity). For specific paleoecological context, we consider how these results inform our reconstruction of Jurassic ammonite recovery from the end-Triassic mass extinction. Greater refinements will come with additional simulations that measure how added mass is influenced by individual shape-trait variations, ornament, and subtle body extensions during a single jet motion.

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arkell, W. J., Kummel, B., and Wright, C. W.. 1957. Mesozoic Ammonoidea. Pp. L90 in Arkell, W. J. et al., eds. Mollusca 4, Cephalopoda, Ammonoidea. Part L of R. C. Moore, ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Barati, R., Neyshabouri, S. A. A. S., and Ahmadi, G.. 2014. Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: an evolutionary approach. Powder Technology 257:1119.10.1016/j.powtec.2014.02.045CrossRefGoogle Scholar
Bartol, I. K., Krueger, P. S., Jastrebsky, R. A., Williams, S., and Thompson, J. T.. 2016. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first. Journal of Experimental Biology 219:392403.Google ScholarPubMed
Bockwinkel, J., Becker, R.T., Aboussalam, Z. S. 2017. Ammonoids from the late Givetian Taouzites Bed of Ouidane Chebbi (eastern Tafilalt, SE Morocco). Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen 284:307354.10.1127/njgpa/2017/0664CrossRefGoogle Scholar
Bucher, H., Landman, N. H., Klofak, S. M., and Guex, J.. 1996. Mode and rate of growth in ammonoids. In Landman, N. H., Tanabe, K., and Davis, R. A., eds. Ammonoid paleobiology. Springer, Boston. Topics in Geobiology 13:407–461.Google Scholar
Chamberlain, J. 1976. Flow patterns and drag coefficients of cephalopod shells. Palaeontology 19:539563.Google Scholar
Chamberlain, J. A. 1980. The role of body extension in cephalopod locomotion. Palaeontology 23:445461.Google Scholar
Chamberlain, J. A. 1991. Cephalopod locomotor design and evolution: the constraints of jet propulsion. Pp. 5798 in Rayner, J. M. V. and Wootton, R. J., eds. Biomechanics and evolution. Cambridge University Press, Cambridge.Google Scholar
Chamberlain, J. A. Jr. 1990. Jet propulsion of Nautilus: a surviving example of early Paleozoic cephalopod locomotor design. NRC Research Press 68:806814.Google Scholar
Chamberlain, J. A. Jr. 1993. Locomotion in ancient seas: constraint and opportunity in cephalopod adaptive design. Geobios 26:4961.10.1016/S0016-6995(06)80360-8CrossRefGoogle Scholar
Chamberlain, J. A. Jr, and Westermann, G.. 1976. Hydrodynamic properties of cephalopod shell ornament. Paleobiology 2:316331.CrossRefGoogle Scholar
Dabiri, J. O., Bose, S., Gemmell, B. J., Colin, S. P., and Costello, J. H.. 2014. An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements. Journal of Experimental Biology 217:331336.Google ScholarPubMed
De Baets, K., Bert, D., Hoffmann, R., Monnet, C., Yacobucci, M. M., and Klug, C.. 2015. Ammonoid intraspecific variability. In Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from anatomy to ecology. Dordrecht, Netherlands: Springer. Topics in Geobiology 43:359426. https://doi.org/10.1007/978-94-017-9630-9_9CrossRefGoogle Scholar
Doguzhaeva, L. A., and Mapes, R. H.. 2015. The body chamber length variations and muscle and mantle attachments in ammonoids. In Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from anatomy to ecology. Dordrecht, Netherlands: Springer. Topics in Geobiology 43:545584.CrossRefGoogle Scholar
Franceschi, M., Corso, J. D., Cobianchi, M., Roghi, G., Penasa, L., Picotti, V., and Petro, N.. 2019. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian–Pliensbachian, southern Alps): comparison with the Late Triassic Carnian. Geological Society of America Bulletin 131:12551275.CrossRefGoogle Scholar
Gemmell, B. J., Colin, S. P., Costello, J. H., and Dabiri, J. O.. 2015. Suction-based propulsion as a basis for efficient animal swimming. Nature Communications 6:18.10.1038/ncomms9790CrossRefGoogle ScholarPubMed
Gonzalez, H., Giesecke, R., Vargas, C., Paves, M., Iriarte, J., Santibanez, P., Castro, L., Escribano, R., and Pages, F.. 2004. Carbon cycling through the pelagic foodweb in the northern Humboldt Current off Chile (23°S). ICES Journal of Marine Science 61:572584.10.1016/j.icesjms.2004.03.021CrossRefGoogle Scholar
Guex, J. 1995. Ammonites hettangiennes de la Gabbs Valley Range (Nevada, USA). Mémoires de Géologie Lausanne 27:1131.Google Scholar
Hammer, O., and Bucher, H.. 2006. Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation in Amaltheus. Paleontological Research 10:9196.10.2517/prpsj.10.91CrossRefGoogle Scholar
Hebdon, N., Ritterbush, K., and Choi, Y.. 2020a. Assessing the morphological impacts of ammonoid shell shape through systematic shape variation. Integrative and Comparative Biology 60:13201329.10.1093/icb/icaa067CrossRefGoogle ScholarPubMed
Hebdon, N., Ritterbush, K. A., and Choi, Y.. 2020b. Computational fluid dynamics modeling of fossil ammonoid shells. Palaeontologia Electronica 23:220.Google Scholar
Hoffmann, R., Lemanis, R., Naglik, C., and Klug, C.. 2015. Ammonoid buoyancy. In Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from anatomy to ecology. Dordrecht, Netherlands: Springer. Topics in Geobiology 43:621656.Google Scholar
Ifrim, C., Bengston, P., and Schweigert, G.. 2018. Growth and function of spines in Jurassic and Cretaceous ammonites. Cretaceous Research 88:6278.10.1016/j.cretres.2017.05.003CrossRefGoogle Scholar
Jacobs, D. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18:203220.10.1017/S009483730001397XCrossRefGoogle Scholar
Jacobs, D. K., and Landman, N. H.. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101111.10.1111/j.1502-3931.1993.tb01799.xCrossRefGoogle Scholar
Kerr, J. P., and Kelley, P. H.. 2015. Assessing the influence of escalation during the Mesozoic Marine Revolution: shell breakage and adaptation against enemies in Mesozoic ammonites. Palaeogeography, Palaeoclimatology, Palaeoecology 440:632646.CrossRefGoogle Scholar
Keupp, H. 2006. Sublethal punctures in body chambers of Mesozoic ammonites (forma aegra fenestra nf), a tool to interpret synecological relationships, particularly predator-prey interactions. Paläontologische Zeitschrift, 80:112123.CrossRefGoogle Scholar
Klompmaker, A. A., Waljaard, N. A., and Fraaije, R. H. B.. 2009. Ventral bite marks in Mesozoic ammonoids. Paleaeogeography, Palaeoclimatology, Palaeoecology 280:245257.10.1016/j.palaeo.2009.06.013CrossRefGoogle Scholar
Klug, C., and Korn, D.. 2002. Occluded umbilicus in the Pinacitinae (Devonian) and its palaeoecological implications. Palaeontology 45:917931.10.1111/1475-4983.00268CrossRefGoogle Scholar
Klug, C., Baets, K. De, Kröger, B., Bell, M. A., Korn, D., and Payne, J. L.. 2015. Normal giants? Temporal and latitudinal shifts of Palaeozoic marine invertebrate gigantism and global change. Lethaia, 48:267288.10.1111/let.12104CrossRefGoogle Scholar
Klug, C., De Baets, K., and Korn, D.. 2016. Exploring the limits of morphospace: ontogeny and ecology of Late Viséan ammonoids from the Tafilalt (Morocco). Acta Palaeontologica Polonica 61:11410.4202/app.00220.2015CrossRefGoogle Scholar
Klug, C., Schweigert, G., Tischlinger, H., and Pochmann, H.. 2021. Failed prey or peculiar necrolysis? Isolated ammonite soft body from the Late Jurassic of Solnhofen (Germany). Swiss Journal of Palaeontology 140(3):15.10.1186/s13358-021-00229-9CrossRefGoogle ScholarPubMed
Kröger, B. 2002a. Antipredatory traits of the ammonoid shell—indications from Jurassic ammonoids with sublethal injuries. Paläontologische Zeitschrift 76:223234.10.1007/BF02989859CrossRefGoogle Scholar
Kröger, B. 2002b. On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35:6170.10.1111/j.1502-3931.2002.tb00068.xCrossRefGoogle Scholar
Laptikhovsky, V., Nikolaeva, S., and Rogov, M.. 2018. Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa. Biological Reviews 93:270283.10.1111/brv.12341CrossRefGoogle ScholarPubMed
Lemanis, R., Zachow, S., Fusseis, F., and Hoffmann, R.. 2015. A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells. Paleobiology 41:313329.CrossRefGoogle Scholar
Lukeneder, A. 2015. Ammonoid habitats and life history. In Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R. H., eds. Ammonoid paleobiology: from anatomy to ecology. Dordrecht, Netherlands: Springer. Topics in Geobiology 43:689791.CrossRefGoogle Scholar
Monnet, C., De Baets, K., and Klug, C.. 2011. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evolutionary Biology 11, 115.10.1186/1471-2148-11-115CrossRefGoogle ScholarPubMed
Monnet, C., Klug, C., and De Baets, K.. 2015. Evolutionary patterns of ammonoids: trends, convergence, and parallel evolution. In Mapes, R. H., Korn, D., Klug, C., De Baets, K., and Kruta, I.. Ammonoid paleobiology: from macroevolution to paleogeography. Dordrecht, Netherlands: Springer. Topics in Geobiology 44:95142.10.1007/978-94-017-9633-0_5CrossRefGoogle Scholar
Morón-Alfonso, D. A., Peterman, D. J., Cichowolski, M., Hoffmann, R., and Lemanis, R. E.. 2020. Virtual 3D modeling of the ammonoid conch to study its hydrostatic properties. Acta Palaeontologica Polonica 65:467480.10.4202/app.00776.2020CrossRefGoogle Scholar
Moulton, D. E., Goriely, A., and Chirat, R.. 2015. The morpho-mechanical basis of ammonite form. Journal of Theoretical Biology 364:220230.10.1016/j.jtbi.2014.09.021CrossRefGoogle ScholarPubMed
Naglik, C., Rikhtegar, F., and Klug, C.. 2015. Buoyancy of some Palaeozoic ammonoids and their hydrostatic properties based on empirical 3D-models. Lethaia 49:312.10.1111/let.12125CrossRefGoogle Scholar
Naglik, C., Rikhtegar, F. N., and Klug, C.. 2016. Buoyancy in Palaeozoic ammonoids from empirical 3D-models and their place in a theoretical morphospace. Lethaia 49:31210.1111/let.12125CrossRefGoogle Scholar
Neil, T. R., and Askew, G. N.. 2018. Swimming mechanics and propulsive efficiency in the chambered nautilus. Royal Society Open Science 5:170467170469.CrossRefGoogle ScholarPubMed
O'Dor, R. 2002. Telemetered cephalopod energetics: swimming, soaring, and blimping. Integrative and Comparative Biology 42:10651070.CrossRefGoogle ScholarPubMed
O'Dor, R., and Webber, D. M.. 1991. Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution. Journal of Experimental Biology 160:93112.10.1242/jeb.160.1.93CrossRefGoogle Scholar
Packard, A., Bone, Q., and Hignette, M.. 1980. Breathing and swimming movements in a captive Nautilus. Journal of the Marine Biology Association of the United Kingdom 60:313327.10.1017/S0025315400028368CrossRefGoogle Scholar
Parent, H., Westermann, G. E., and Chamberlain, J. A. Jr. 2014. Ammonite aptychi: functions and role in propulsion. Geobios 47:4555.10.1016/j.geobios.2013.12.001CrossRefGoogle Scholar
Parent, H., Bejas, M., and Greco, A.. 2020. Shell area–to-volume ratio in ammonoids. Palaeontological Research Society of Japan 24:216225.10.2517/2019PR013CrossRefGoogle Scholar
Peng, J., and Dabiri, J. O.. 2008. The “upstream wake” of swimming and flying animals and its correlation with propulsive efficiency. Journal of Experimental Biology 211:26692677.CrossRefGoogle Scholar
Peterman, D. J., Ciampaglio, C., Shell, R. C., and Yacobucci, M. M.. 2019. Mode of life and hydrostatic stability of orthoconic ectocochleate cephalopods: hydrodynamic analyses of restoring moments from 3D-printed, neutrally buoyant models of a baculite. Acta Palaeontologica Polonica 64:441460.10.4202/app.00595.2019CrossRefGoogle Scholar
Peterman, D. J., Hebdon, N., Ciampaglio, C. N., Yacobucci, M. M., Landman, N.H., and Linn, T.. 2020a. Syn vivo hydrostatic and hydrodynamic properties of scaphitid ammonoids from the U.S. Western Interior. Geobios 60:7998.Google Scholar
Peterman, D. J., Mikami, T., and Inoue, S.. 2020b. The balancing act of Nipponites mirabilis (Nostoceratidae, Ammonoidea): managing hydrostatics throughout a complex ontogeny. PLoS ONE 15(8):e0235180.10.1371/journal.pone.0235180CrossRefGoogle ScholarPubMed
Peterman, D. J., Shell, R. C., Ciampaglio, C. N., and Yacobucci, M. M.. 2020c. Stable hooks: biomechanics of heteromorph ammonoids with U-shaped body chambers. Journal of Molluscan Studies 86:267279.10.1093/mollus/eyaa018CrossRefGoogle Scholar
Peterman, D., Ritterbush, K. A., Ciampaglio, C. N., Johnson, E. H., Inoue, S., Mikami, T., and Linn, T. J.. 2021. Buoyancy control in ammonoid cephalopods refined by complex internal shell architecture. Scientific Reports 11:8055.10.1038/s41598-021-87379-5CrossRefGoogle ScholarPubMed
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365Google Scholar
R Core Development Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Ritterbush, K. A. 2015. Interpreting drag consequences of ammonoid shells by comparing studies in Westermann Morphospace. Swiss Journal of Palaeontology 135:125138.10.1007/s13358-015-0096-8CrossRefGoogle Scholar
Ritterbush, K. A., and Bottjer, D. J.. 2012. Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424446.10.1666/10027.1CrossRefGoogle Scholar
Rosa, R., Lopez, V. M., Guerreiro, M., Bolstad, K., and Xavier, J. C.. 2017. Biology and ecology of the world's largest invertebrate, the colossal squid (Mesonychoteuthis hamiltoni): a short review. Polar Biology 40:18711883.CrossRefGoogle Scholar
Roura, Á., Amor, M., González, A. F., Guerra, A., Barton, E. D., and Strugnell, J. M.. 2019. Oceanographic processes shape genetic signatures of planktonic cephalopod paralarvae in two upwelling regions. Progress in Oceanography 170:1127.CrossRefGoogle Scholar
Saunders, W. B., and Shapiro, E. A.. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:6479.10.1017/S0094837300002980CrossRefGoogle Scholar
Seibel, B. A. 2007. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology 210:111.CrossRefGoogle ScholarPubMed
Seibel, B. A., and Drazen, J. C.. 2007. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of the Royal Society of London B 362:20612078.CrossRefGoogle ScholarPubMed
Seibel, B. A., Thuesen, E. V., Childress, J. J., and Gorodezky, L. A.. 1997. Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biological Bulletin 192:262278.CrossRefGoogle ScholarPubMed
Seki, K., Tanabe, K., Landman, N., and Jacobs, D.. 2000. Hydrodynamic analysis of Late Cretaceous desmoceratine ammonites. Revue de Paléobiologie, Genève 8:141155.Google Scholar
Smith, P. L., Longridge, L. M., Grey, M., Zhang, J., and Liang, B.. 2014. From near extinction to recovery: Late Triassic to Middle Jurassic ammonoid shell geometry. Lethaia 47:337351.CrossRefGoogle Scholar
Staaf, D. J., Gilly, W. F., and Denny, M. W.. 2014. Aperture effects in squid jet propulsion. Journal of Experimental Biology 217:15881600.Google ScholarPubMed
Tajika, A., Naglik, C., Morimoto, N., Pascual-Cebrian, E., Hennhöfer, D. K., and Klug, C.. 2015. Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites: its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biology 27:181191.CrossRefGoogle Scholar
Tajika, A., Landman, N. H., Hoffmann, R., Lemanis, R., Morimoto, N., Ifrim, C., and Klug, C.. 2020. Chamber volume development, metabolic rates, and selective extinction in cephalopods. Scientific Reports 10:2950.CrossRefGoogle ScholarPubMed
Tendler, A., Mayo, A., and Alon, U.. 2015. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Systems Biology 9:112.CrossRefGoogle ScholarPubMed
Ward, P. 1981. Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96100.CrossRefGoogle Scholar
Ward, P., Stone, R., Westermann, G., and Martin, A.. 1977. Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology 3:377388.CrossRefGoogle Scholar
Westermann, G. E. G. 1996. Ammonoid life and habitat. In Landman, N. H., Tanabe, K., and Davis, R. A., eds. Ammonoid paleobiology. Springer, Boston. Topics in Geobiology 13:607707. https://doi.org/10.1007/978-1-4757-9153-2_16.CrossRefGoogle Scholar
Wells, M. J. 1990. Oxygen extraction and jet propulsion in cephalopods. Canadian Journal of Zoology 68:815824.10.1139/z90-117CrossRefGoogle Scholar
Xiang, Y., Qin, S., and Liu, H.. 2018. Patterns for efficient propulsion during the energy evolution of vortex rings. European Journal of Mechanics - B/Fluids 71:4758.CrossRefGoogle Scholar
Yacobucci, M. M. 2004. Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretaceous Research 25:927944.CrossRefGoogle Scholar
Yang, H., Fan, M., Liu, A., and Dong, L.. 2015. General formulas for drag coefficient and settling velocity of sphere based on theoretical law. International Journal of Mining Science and Technology 25:219223.10.1016/j.ijmst.2015.02.009CrossRefGoogle Scholar