Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T12:08:01.545Z Has data issue: false hasContentIssue false

Relative oversampling of carbonate rocks in the North American marine fossil record

Published online by Cambridge University Press:  29 May 2023

Diego Balseiro*
Affiliation:
Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611 Ciudad Universitaria, Córdoba X5016GCA Argentina; CONICET, Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Córdoba X5016GCA, Argentina. E-mail: dbalseiro@unc.edu.ar
Matthew G. Powell
Affiliation:
Department of Geology, Juniata College, 1700 Moore Street, Huntingdon, Pennsylvania 16652 USA. E-mail: powell@juniata.edu
*
*Corresponding author.

Abstract

Paleontologists have long stressed the need to know how sampling the fossil record might influence our knowledge of the evolution of life. Here, we combine fossil occurrences of North American marine invertebrates from the Paleobiology Database with lithologic data from Macrostrat to identify sampling patterns in carbonate and siliciclastic rocks. We aim to quantify temporal trends in sampling effort within and between lithologies, focusing on the proportion of total available volume that has been sampled (sampled fossiliferous proportion, here called κ). Results indicate that the sampled fossiliferous proportion was stable during the Paleozoic, and variable during the post-Paleozoic, but showed no systematic increase through time. Fossiliferous carbonate rocks are proportionally more sampled than siliciclastic rocks, with intervals where the carbonate κ is double the siliciclastic κ. Among possible explanations for the apparent oversampling of fossiliferous carbonate rocks, analyses suggest that barren units, taphonomic dissolution, or data entry errors cannot completely explain sampling patterns. Our results suggest that one of the important drivers might be that paleontologists publish taxonomic descriptions from carbonate rocks more frequently. The higher diversity in carbonate rocks might account for an ease in the description of unknown species and therefore a higher rate of published fossils. Finally, a strong effect in favor of carbonate rocks might distort our perception of diversity through time, even under commonly used standardization methods. Our results also confirm that previous descriptions of an increase in the proportion of sampled fossiliferous rocks over time were driven by the sampling of the nonmarine fossil record.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexandersson, E. T. 1976. Actual and anticipated petrographic effects of carbonate undersaturation in shallow seawater. Nature 262:653657.10.1038/262653a0CrossRefGoogle Scholar
Aller, R. C. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology 90:7995.10.1086/628652CrossRefGoogle Scholar
Alroy, J. 2010a. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In Alroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:5580.Google Scholar
Alroy, J. 2010b. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.10.1111/j.1475-4983.2010.01011.xCrossRefGoogle Scholar
Alroy, J. 2020. On four measures of taxonomic richness. Paleobiology 46:158175.10.1017/pab.2019.40CrossRefGoogle Scholar
Balseiro, D., and Powell, M. G.. 2020. Carbonate collapse and the late Paleozoic ice age marine biodiversity crisis. Geology 48:118122.10.1130/G46858.1CrossRefGoogle Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A.. 2000. Taphonomy and paleobiology. Paleobiology 26:103137.10.1017/S0094837300026907CrossRefGoogle Scholar
Best, M. M. R. 2008. Contrast in preservation of bivalve death assemblages in siliciclastic and carbonate tropical shelf settings. Palaios 23:796809.10.2110/palo.2005.p05-076rCrossRefGoogle Scholar
Best, M. M. R., and Kidwell, S. M.. 2000. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology 26:80102.Google Scholar
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York.Google Scholar
Catuneanu, O. 2006. Principles of sequence stratigraphy. Elsevier, Amsterdam.Google Scholar
Cherns, L., and Wright, V. P.. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.10.1130/0091-7613(2000)28<791:MMAEOL>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Cherns, L., and Wright, V. P.. 2009. Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24:756771.10.2110/palo.2008.p08-134rCrossRefGoogle Scholar
Cherns, L., and Wright, V. P.. 2011. Skeletal mineralogy and biodiversity of marine invertebrates: size matters more than seawater chemistry. In McGowan, A. J. and Smith, A. B., eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publication 358:917.Google Scholar
Close, R. A., Evers, S. W., Alroy, J., and Butler, R. J.. 2018. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods in Ecology and Evolution 9:13861400.10.1111/2041-210X.12987CrossRefGoogle Scholar
Daley, G. M., and Bush, A. M. 2020. The effects of lithification on fossil assemblage biodiversity and composition: an experimental test. Palaeontologia Electronica 23(3):a53.Google Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.CrossRefGoogle Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Nelson, C. S.. 2015. Aragonite bias, and lack of bias, in the fossil record: lithological, environmental, and ecological controls. Paleobiology 41:245265.10.1017/pab.2014.16CrossRefGoogle Scholar
Hawkins, A. D., Kowalewski, M., and Xiao, S.. 2018. Breaking down the lithification bias: the effect of preferential sampling of larger specimens on the estimate of species richness, evenness, and average specimen size. Paleobiology 44:326345.10.1017/pab.2017.39CrossRefGoogle Scholar
Hayek, L. and Buzas, M. 2010. Surveying natural populations: quantitative tools for assessing biodiversity, 2nd ed. Columbia University Press, New York.10.7312/haye14620CrossRefGoogle Scholar
Hendy, A. J. W. 2009. The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:5162.10.1666/07047.1CrossRefGoogle Scholar
Hendy, A. J. W. 2011. Taphonomic overprints on Phanerozoic trends in biodiversity: lithification and other secular megabiases. Pp. 1977 in Allison, P. A. and Bottjer, D. J., eds. Taphonomy: process and bias through time. Springer, Dordrecht, Netherlands.Google Scholar
Holland, S. 2022. The structure of the nonmarine fossil record: predictions from a coupled stratigraphic–paleoecological model of a coastal basin. Paleobiology 48:372396.10.1017/pab.2022.5CrossRefGoogle Scholar
Holland, S., and Loughney, K. M.. 2021. The stratigraphic paleobiology of nonmarine systems. Elements of Paleontology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hopkins, M. J., Simpson, C., and Kiessling, W.. 2014. Differential niche dynamics among major marine invertebrate clades. Ecology Letters 17:314323.CrossRefGoogle ScholarPubMed
Hunt, G. 2008. Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360377.CrossRefGoogle Scholar
Hunt, G. 2021. paleoTS: analyze paleontological time-series, R package version 0.5.3. https://cran.r-project.org/web/packages/paleoTS/index.html.Google Scholar
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.Google ScholarPubMed
Kidwell, S. M., Best, M. M. R., and Kaufman, D. S.. 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729729.Google Scholar
Magurran, A. E. 2004. Measuring ecological diversity. Blackwell Science, Oxford, U.K.Google Scholar
Marshall, C. R., Finnegan, S., Clites, E. C., Holroyd, P. A., Bonuso, N., Cortez, C., Davis, E., Dietl, G. P., Druckenmiller, P. S., Engo, R. C., Garcia, C., Estes-Smargiassi, K., Hendy, A., Hollis, K. A., Little, H., Nesbitt, E. A., Roopnarine, P., Skibinski, L., Vendetti, J., and White, L. D.. 2018. Quantifying the dark data in museum fossil collections as palaeontology undergoes a second digital revolution. Biology Letters 14:25.10.1098/rsbl.2018.0431CrossRefGoogle ScholarPubMed
Nawrot, R. 2012. Decomposing lithification bias: preservation of local diversity structure in recently cemented storm-beach carbonate sands, San Salvador Island, Bahamas. Palaios 27:190205.10.2110/palo.2011.p11-028rCrossRefGoogle Scholar
Peters, S. E. 2006. Macrostratigraphy of North America. Journal of Geology 114:391412.10.1086/504176CrossRefGoogle Scholar
Peters, S. E. 2007. The problem with the Paleozoic. Paleobiology 33:165181.10.1666/06067.1CrossRefGoogle Scholar
Peters, S. E., and Foote, M.. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.10.1666/0094-8373(2001)027<0583:BITPAR>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Peters, S. E., and Heim, N. A.. 2010. The geological completeness of paleontological sampling in North America. Paleobiology 36:6179.10.1666/0094-8373-36.1.61CrossRefGoogle Scholar
Peters, S. E., Husson, J. M., and Czaplewski, J.. 2018. Macrostrat: a platform for geological data integration and deep-time earth crust research. Geochemistry, Geophysics, Geosystems 19:13931409.CrossRefGoogle Scholar
Powell, M. G., and Kowalewski, M.. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.2.0.CO;2>CrossRefGoogle Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.10.1126/science.177.4054.1065CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.10.1017/S0094837300004929CrossRefGoogle Scholar
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology 89:569584.CrossRefGoogle Scholar
Schovsbo, N. H. 2001. Why barren intervals? A taphonomic case study of the Scandinavian Alum Shale and its faunas. Lethaia 34:271285.CrossRefGoogle Scholar
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J.. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115118.CrossRefGoogle Scholar
Smith, A. B., and McGowan, A. J.. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of western Europe. Palaeontology 50:765774.10.1111/j.1475-4983.2007.00693.xCrossRefGoogle Scholar
Smith, A. B., and McGowan, A. J.. 2008. Temporal patterns of barren intervals in the Phanerozoic. Paleobiology 34:155161.10.1666/07042.1CrossRefGoogle Scholar
Smith, A. B., and McGowan, A. J.. 2011. The ties linking rock and fossil records and why they are important for palaeobiodiversity studies. In McGowan, A. J. and Smith, A. B., eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society, London, Special Publications 358:17.Google Scholar
Tomašových, A., Kidwell, S. M., Alexander, C. R., and Kaufman, D. S.. 2019. Millennial-scale age offsets within fossil assemblages: result of bioturbation below the taphonomic active zone and out-of-phase production. Paleoceanography and Paleoclimatology 34:954977.10.1029/2018PA003553CrossRefGoogle Scholar
Wall, P. D., Ivany, L. C., and Wilkinson, B. H.. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146167.10.1666/07069.1CrossRefGoogle Scholar