Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T06:46:42.346Z Has data issue: false hasContentIssue false

Numerical model of late Pleistocene and Holocene ice-sheet and shoreline dynamics in the southern Baltic Sea, Poland

Published online by Cambridge University Press:  21 February 2022

Jerzy Jan Frydel*
Affiliation:
Polish Geological Institute–National Research Institute, Branch of Marine Geology in Gdansk-Oliwa, 5 Koscierska Street, 80-328, Gdansk, Poland.
*
*Corresponding author at: Polish Geological Institute–National Research Institute, Branch of Marine Geology in Gdansk-Oliwa, 5 Koscierska Street, 80-328, Gdansk, Poland. E-mail address: jerzy.frydel@pgi.gov.pl (J.J. Frydel).

Abstract

This paper reveals deglaciation palaeodynamics (Marine Oxygen Isotope Stage 2 [MIS 2]) in Poland and the southern Baltic Sea (SBS) development during marine transgression/regression phases (MIS 1) determined by a numerical modelling method. The introduced approach uses a high-level polynomial regression followed by the integral calculus of successive functions and an application of formulae. As a result, palaeogeographic relations from primary matrix transform instantly into palaeodynamics within a nested matrix. Accordingly, within 9 ka of the late Pleistocene, glacial recession dynamics increased by two orders of magnitude, from −8.5 m/yr between Leszno (L, 24 ka BP) and Poznań (Poz, 20–19 ka BP) phases, through several dozen (−37.2 m/yr, −60.6 m/yr, −90.7 m/yr) to the maximum average equalling −427.3 m/yr (max. −861.4 m/yr) between the Pomeranian (Pom, 17–16 ka BP) and the Gardno (G, 16.8–16.6 ka BP) phases. In turn, SBS coastline transgression and regression dynamics varied by three orders of magnitude. Since the Baltic Ice Lake (BIL, 10.5–10.3 ka BP) up to the Yoldia Sea (YS, 10–9.9 ka BP) regression was intense and equalled −56.8 m/yr (max. −128.7 m/yr), followed by marine transgression towards the Ancylus Lake (AL, 8.7–8.5 ka BP) at 21.43 m/yr through 9.30–2.20 m/yr during the Littorina Sea 1 and Littorina Sea 2 stages (LS1 and LS2, since 7.7 ka BP), eventually 0.51 m/yr in the last 6.05 ka. The 2 m sea-level rise scenario projections indicate approx. 3400 km2 of land and 684,000 inhabitants face flood risk around 2150–2240 CE, with marine transgression dynamics expected to range from 23.9–38.2 m/yr.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., et al. , 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 505510.CrossRefGoogle ScholarPubMed
Bagdanavičiūtė, I., Kelpšaite, L., Daunys, D., 2012. Assessment of shoreline changes along the Lithuanian Baltic Sea coast during the period 1947–2010. Baltica 25, 171184.CrossRefGoogle Scholar
Bagdanavičiūte, I., Kelpšaite, L., Soomere, T., 2015. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean and Coastal Management 104, 124135.CrossRefGoogle Scholar
Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D., Lollino, G., 2009. LIDAR monitoring of mass wasting processes: the Radicofani landslide, province of Siena, central Italy. Geomorphology 105, 193201.CrossRefGoogle Scholar
Belperio, A.P., Harvey, N., Bourman, R.P., 2002. Spatial and temporal variability in the Holocene sea-level record of the South Australian coastline. Sedimentary Geology 150, 153169.CrossRefGoogle Scholar
Berglund, M., 2004. Holocene shore displacement and chronology in Ångermanland, eastern Sweden, the Scandinavian glacio-isostatic uplift center. Boreas 33, 4860.CrossRefGoogle Scholar
Brooks, S.M., Spencer, T., 2010. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK. Geomorphology 124, 2641.CrossRefGoogle Scholar
Carr, J.R., Stokes, C., Vieli, A., 2017. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journal of Glaciology 60(219), 155170.CrossRefGoogle Scholar
Castedo, R., de la Vega-Panizo, R., Fernández-Hernández, M., Paredes, C., 2015. Measurement of historical cliff-top changes and estimation of future trends using GIS data between Bridlington and Hornsea–Holderness Coast (UK). Geomorphology 230, 146160.CrossRefGoogle Scholar
Costa, B.M., Battista, T.A., Pittman, S.J., 2009. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sensing of Environment 113, 10821100.CrossRefGoogle Scholar
Crowell, M., Douglas, B.C., Leatherman, S.P., 1997. On forecasting future US shoreline positions: a test of algorithms. Journal of Coastal Research 13, 12451255.Google Scholar
Crutzen, P., 2002. Geology of mankind. Nature 415, 23.CrossRefGoogle ScholarPubMed
Dąbrowski, M., Krotkiewski, M., Schmid, D.W., 2008. MILAMIN: MATLAB based finite element method solver for large problems. Geochemistry, Geophysics, Geosystems 9, 124.CrossRefGoogle Scholar
Deng, J., Harff, J., Zhang, W., Schneider, R., Dudzinska-Nowak, J., Giza, A., Terefenko, P., et al. 2017. The dynamic equilibrium shore model for the reconstruction and future projection of coastal morphodynamics. In: Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East—Past and Future Projection. Coastal Research Library 19. Springer, Cham, Switzerland, pp. 87106.CrossRefGoogle Scholar
Deng, J., Zhang, W., Harff, J., Schneider, R., Dudzinska-Nowak, J., Terefenko, P., Giza, A., et al. 2014. A numerical approach to approximate the historical morphology of wave-dominated coasts—a case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204, 425443.CrossRefGoogle Scholar
Dewitte, O., Jasselette, J.C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., Demoulin, A., 2008. Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology 99, 1122.CrossRefGoogle Scholar
Dudzińska-Nowak, J., 2015. Coastal Protection Methods used along Western Poland (southern Baltic Sea) and the Subsequent Shoreline Effects (1938–2011). University of Szczecin Thesis and Studies (CMLXXIX) 905. University of Szczecin, Szczecin, Poland, p. 171.Google Scholar
Dudzińska-Nowak, J., 2017. Morphodynamic processes of the Swina Gate coastal zone development (southern Baltic Sea). In: Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East—Past and Future Projection. Coastal Research Library 19. Springer, Cham, Switzerland, pp. 219256.CrossRefGoogle Scholar
Dudzińska-Nowak, J., Wężyk, P., 2014. Volumetric changes of the of the Pleistocene cliff coast in 2008–2012 based on DTM from airborne laser scanning (Wolin Island, southern Baltic Sea). In: Green, A.N., Cooper, J.A.G. (Eds.), Proceedings of the 13th International Coastal Symposium (Durban, South Africa). Special issue, Journal of Coastal Research 70, 5964.CrossRefGoogle Scholar
Frydel, J.J., 2019. Comment to “Short-Term Prognosis of Development of Barrier-Type Coasts (Southern Baltic Sea)” by Grzegorz Uścinowicz and Tomasz Szarafin. Ocean and Coastal Management 167, 288.CrossRefGoogle Scholar
Frydel, J.J., Mil, L., Szarafin, T., Koszka-Maroń, D., Przyłucka, M., 2017. Spatiotemporal differentiation of cliff erosion rate within the Ustka Bay near Orzechowo. [In Polish, with English abstract]. Landform Analysis 34, 314.CrossRefGoogle Scholar
Furmańczyk, K.K., Dudzińska-Nowak, J., Furmanczyk, K.A., Paplinska-Swerpel, B., Brzezowska, N., 2012. Critical storm thresholds for the generation of significant dune erosion at Dziwnow Spit, Poland. Geomorphology 143–144, 6268.CrossRefGoogle Scholar
Genz, A.S., Fletcher, C.H., Frazer, D.L., Rooney, J., 2007. The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. Journal of Coastal Research 23, 87105.CrossRefGoogle Scholar
Golledge, N.R., 2020. Long-term projections of sea-level rise from ice sheets. WIREs Climate Change 11, e634.CrossRefGoogle Scholar
Graniczny, M., Čyžienė, J., van Leijen, F., Minkevičius, V., Mikulėnas, V., Satkūnas, J., Przyłucka, M., et al. 2015. Vertical ground movements in the Polish and Lithuanian Baltic coastal area as measured by satellite interferometry. Baltica 28, 6580.CrossRefGoogle Scholar
Grant, G.R., Naish, T.R., Dunbar, G.B., Stocchi, P., Kominz, M.A., Kamp, P.J.J., Tapia, C.A., et al. , 2019. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 574, 237241.CrossRefGoogle ScholarPubMed
Hall, A., van Boeckel, M., 2020. Origin of the Baltic Sea basin by Pleistocene glacial erosion. GFF 142, 237252.CrossRefGoogle Scholar
Hanson, H., 1989. Genesis: a generalized shoreline change numerical model. Journal of Coastal Research 5, 127.Google Scholar
Harff, J., Flemming, N., Groh, A., Hünicke, B., Lericolais, G., Meschede, M., Rosentau, A., et al. , 2017. Sea level and climate. In: Flemming, N., Harff, J., Moura, D., Burgess, A., Bailey, G.N. (Eds.), Submerged Landscapes of the European Continental Shelf, Quaternary Palaeoenvironments. Wiley, Oxford, 1150.CrossRefGoogle Scholar
Harff, J., Meyer, M., 2011. Coastlines of the Baltic Sea—zones of competition between geological processes and a changing climate: examples from the southern Baltic. In: Harff, J., Björck, S., Hoth, P. (Eds.) The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES). Springer, Berlin, pp. 149164.CrossRefGoogle Scholar
HELCOM, 2013. Climate Change in the Baltic Sea Area, HELCOM Thematic Assessment in 2013. Baltic Sea Environment Proceedings 137. Helsinki Commission, Helsinki, p. 66.Google Scholar
Hobbs, P.R.N., Gibson, A., Jones, L., Pennington, C., Jenkins, G., Pearson, S., Freeborough, K., 2010. Monitoring coastal change using terrestrial LiDAR. Geological Society of London, Special Publications 345, 117127.CrossRefGoogle Scholar
Hughes, J., 1990. Why functional programming matters. In: Turner, D. (Ed.), Research Topics in Functional Programming. Addison-Wesley, United States, pp. 1742.Google Scholar
IPCC, 2018. Special Report: Global Warming of 1.5°C (accessed October 15, 2020). https://www.ipcc.ch/sr15.Google Scholar
Jasiński, Ł., Pacuła, J., Dąbrowski, M., Badura, J., Uścinowicz, G., Szarafin, T., Jurys, L., et al. , 2018. Modelling the dynamics of cliffs in the southern coast of the Baltic Sea. [In Polish.] In: Witak, M., Pędziński, J., Trzcińska, K. (Eds.), Geological Processes in the Coastal Zone of the Baltic Sea—GEOSTIII Conference Book of Abstracts. Jastrzębia Góra, Poland, pp. 2122.Google Scholar
Karlsson, S., Risberg, J., 2005. Växthistoria och strandförskjutning i området kring Fjäturen och Gullsjön, södra Uppland. In: Johansson, A., Lindgren, C. (Eds.), En introduktion till det arkeologiska projektet Norrortsleden. Birger Gustafsson, Stockholm, pp. 71126.Google Scholar
Kostrzewski, A., Zwoliński, Z., Winowski, M., Tylkowski, J., Samołyk, M., 2015. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic), Baltica, 28(2), 109120.CrossRefGoogle Scholar
Kowalewski, M., Kowalewska-Kalkowska, H., 2017. Sensitivity of the Baltic Sea level prediction to spatial model resolution. Journal of Marine Systems 173, 101113.CrossRefGoogle Scholar
Kramarska, R., Frydel, J., Jegliński, W., 2011. Terrestrial laser scanning application for coastal geodynamics assessment: the case of Jastrzebia Góra cliff. [In Polish with English abstract.] Biuletyn Państwowego Instytutu Geologicznego 446, 101108.Google Scholar
Kramarska, R., Uścinowicz, G., Jurys, L., Jegliński, W., Przezdziecki, P., Frydel, J., Tarnawska, , et al. , 2014. 4D Cartography Pilot Project in the Coastal Zone of the Southern Baltic Sea. [In Polish.]. PGI-NRI, Warszawa-Gdańsk, pp. 158.Google Scholar
Lampe, R., Meyer, H., Janke, W., Ziekur, R., Janke, W., Endtmann, E., 2007. Holocene evolution of an irregularly sinking coast: the interplay of eustasy, crustal movement and sediment supply. In: Harff, J., Lüth, F. (Eds.), Sinking Coasts—Geosphere Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea. Bericht der Römisch-Germanischen Kommission 88, pp. 1546.Google Scholar
Łęczyński, L., 2009. Morpholithodynamics of the Hel Peninsula coast. [In Polish.] University of Gdańsk Publishing House, Gdańsk, p. 117.Google Scholar
Linden, M., Möller, P., Björck, S., Sandgren, P., 2006. Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35:122.CrossRefGoogle Scholar
Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. Freeman, New York, p. 468.Google Scholar
Marks, L., 2002. Last glacial maximum in Poland. Quaternary Science Reviews 21, 103110.CrossRefGoogle Scholar
Marks, L., Dzierżek, J., Janiszewski, R., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., et al. , 2016. Quaternary stratigraphy and palaeogeography of Poland. Acta Geologica Polonica 66, 403427.CrossRefGoogle Scholar
Matsumoto, H., Dickson, M.E., Kench, P.S., 2016. An exploratory numerical model of rocky shore profile evolution. Geomorphology 268, 98109.CrossRefGoogle Scholar
Meyer, M., 2003. Modelling prognostic coastline scenarios for the southern Baltic Sea. Baltica 16, 2130.Google Scholar
Miettinen, A., 2004. Holocene seal-level changes and glacio-isostasy in the Gulf of Finland, Baltic Sea. Quaternary International 120, 91104.CrossRefGoogle Scholar
Oppenheimer, M., Glavovic, B.C., Hinkel, J., van de Wal, R., Magnan, A.K., Abd-Elgawad, A., Cai, R., et al. , 2019. Sea level rise and implications for low-lying islands, coasts and communities. In: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., et al. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.Google Scholar
Paprotny, D., Terefenko, P., 2017. New estimates of potential impacts of sea level rise and coastal floods in Poland. Natural Hazards 85, 12491277.CrossRefGoogle Scholar
Ridley, J., Gregory, J. M., Huybrechts, P., Lowe, J., 2010. Thresholds for irreversible decline of the Greenland ice sheet. Climate Dynamics 35, 10651073.CrossRefGoogle Scholar
Rosentau, A., Bennike, O., Uścinowicz, S., Miotk-Szpiganowicz, G., 2017. The Baltic Sea basin. In: Flemming, N.C., Harff, J., Moura, D., Burgess, A., Bailey, G.N. (Eds.), Submerged Landscapes of the European Continental Shelf, Quaternary Palaeoenvironments. Wiley, Oxford, pp. 103134.CrossRefGoogle Scholar
Rotnicki, K., Borówka, R.K., Devine, N., 1995. Accelerated sea level rise as a threat to the Polish Coastal Zone—quantification of risk. Special issue, Journal of Coastal Research. 22, 111135.Google Scholar
Saye, S.E., van der Wal, D., Pye, K., Blott, S.J., 2005. Beach-dune morphological relationships and erosion/accretion: an investigation at five sites in England and Wales using LIDAR data. Geomorphology 72, 128155.CrossRefGoogle Scholar
Slater, T., Lawrence, I.R., Otosaka, I.N., Shephard, A., Gourmelen, N., Jakob, L., Tepes, P., et al. , 2020. Earth's ice imbalance. The Cryosphere 15, 233246.CrossRefGoogle Scholar
Trenhaile, A.S., 2010. Modeling cohesive clay coast evolution and response to climate change. Marine Geology 277(1–4), 1120.CrossRefGoogle Scholar
Urbański, J.A., Grusza, G., Chlebus, N., Kryla, L., 2008. A GIS-based WFD oriented typology of shallow micro-tidal soft bottom using wave exposure and turbidity mapping. Estuarine, Coastal and Shelf Science 78, 2737.CrossRefGoogle Scholar
Uścinowicz, G., Lidzbarski, M., Pączek, U., Dąbrowski, M., Jasiński, Ł., Szarafin, T., Jurys, L., et al. , 2018. 4D Cartography in the Coastal Zone of the Southern Baltic Sea—Phase One. [In Polish.], PGI-NRI, Gdańsk, pp. 1137.Google Scholar
Uścinowicz, S., 1999. Southern Baltic area during the last glaciation. Geological Quarterly 43, 137148.Google Scholar
Uścinowicz, S., 2003. Relative sea level changes, glacio-isostatic rebound and shoreline displacement in the Southern Baltic. Polish Geological Institute Special Papers 10, 179.Google Scholar
Uścinowicz, S., 2004. Rapid sea level changes in the southern Baltic during Late Glacial and Early Holocene. In: Proceedings of the Conference “Rapid Transgressions into Semi-enclosed Basins. Polish Geological Institute Special Papers 11, 918.Google Scholar
Uścinowicz, S., 2006. A relative sea-level curve for the Polish Southern Baltic Sea. Quaternary International 145–146, 86105.CrossRefGoogle Scholar
Uścinowicz, S., 2014. Baltic Sea Continental Shelf. In: Chiocci, F., Chivas, A. (Eds.), Continental Shelves during Last Glacioeustatic Cycle: Shelves of the World. Geological Society of London, Memoirs 41, 6989.Google Scholar
Uścinowicz, S., 1995. Evolution of the southern Baltic during the Late Glacial and Holocene. In: Mojski, J.E., Dadlez, R. (Eds.), Geological Atlas of the Southern Baltic. Polish Geological Institute, Sopot-Warszawa, plate 27.Google Scholar
Uścinowicz, S., Zachowicz, J., Graniczny, M., Dobracki, R., 2004. Geological structure of the southern Baltic coast and related hazards. In: Proceedings of the Conference “Risks Caused by the Geodynamic Phenomena in Europe. Polish Geological Institute Special Papers 15, 6168Google Scholar
Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gałuszka, A., Cearreta, A., et al. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622.CrossRefGoogle ScholarPubMed
White, S.A., Wang, Y., 2003. Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline. Remote Sensing of Environment 85, 3947.CrossRefGoogle Scholar
Widlansky, M. J., Long, X., Schloesser, F., 2020. Increase in sea level variability with ocean warming associated with the nonlinear thermal expansion of seawater. Communications Earth & Environment 1, 112.CrossRefGoogle Scholar
Wolski, T., Wisniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, , et al. , 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56, 259290.CrossRefGoogle Scholar
Zalasiewicz, J., Waters, C.N., Williams, M., Barnosky, A.D., Cearreta, A., Crutzen, P., Ellis, E., et al. , 2015. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International 383, 196203.CrossRefGoogle Scholar
Zawadzka-Kahlau, E., 1999. Development Trends of the Polish Southern Baltic Sea Shores. [In Polish.] Gdańsk Scientific Society, Gdańsk, p. 147.Google Scholar
Zawadzka-Kahlau, E., 2012. Morphodynamics of the Southern Baltic Sea Dune Shores. [In Polish.] University of Gdańsk Publishing House, Gdańsk, p. 353.Google Scholar
Zeidler, R.B., 1997. Climate change vulnerability and response strategies for the coastal zone of Poland. Climatic Change 36, 151173.CrossRefGoogle Scholar
Zhang, W., Harff, J., Schneider, R., Meyer, M., Wu, C., 2011. A multiscale centennial morphodynamic model for the Southern Baltic Coast. Journal of Coastal Research 27, 890917.CrossRefGoogle Scholar
Zhang, W., Schneider, R., Kolb, J., Teichmann, T., Dudzinska-Nowak, J., Harff, J., 2015. Land-sea interaction and morphogenesis of coastal foredunes—a modelling case study from the southern Baltic Sea coast. Coastal Engineering 99, 148166.CrossRefGoogle Scholar
Ziervogel, K., Bohling, B., 2003. Sedimentological parameters and erosion behaviour of submarine coastal sediments in the south-western Baltic Sea. Geo-Marine Letters 23, 4352.CrossRefGoogle Scholar
Zolezzi, G., Vanzo, D., Siviglia, A., Stecca, G., 2013. Benchmarking numerical morphodynamic models with analytical morphodynamic theories. Geophysical Research Abstracts 15.Google Scholar
Supplementary material: File

Frydel supplementary material

Frydel supplementary material

Download Frydel supplementary material(File)
File 60 MB