Skip to main content
Log in

Motion of Spinning Particles in Gravitational Fields

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A new path equation in absolute parallelism (AP) geometry is derived. The equation is a generalization of three path equations derived in a previous work. It can be considered as a geodesic equation modified by a torsion term, whose numerical coefficient jumps by steps of one half. The torsion term is parametrized using the fine structure constant. It is suggested that the new equation may describe the trajectories of spinning particles under the influence of a gravitational field, and the torsion term represents a type of interaction between the quantum spin of the moving particle and the background field. Weak field limits of the new path equation show that the gravitational potential felt by a spinning particle is different from that felt by a spinless particle (or a macroscopic body). As a byproduct, and in order to derive the new path equation, the AP-space is reconstructed using a new affine connexion preserving metricity. The new AP-structure has non-vanishing curvature. In certain limits, the new AP-structure can be reduced either to the ordinary Riemannian space, or to the conventional AP-space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanas, M. Motion of Spinning Particles in Gravitational Fields. Astrophysics and Space Science 258, 237–248 (1997). https://doi.org/10.1023/A:1001747710135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001747710135

Keywords

Navigation