Skip to main content
Log in

The biosynthesis and functionality of the cell-wall of lactic acid bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The cell wall of lactic acid bacteria has the typical Gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attribut es of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adlerbeth I, Ahrné S, Johansson ML, Molin G, Hanson LA & Wold AE (1996) A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl. Environ. Microbiol. 62: 2244-2251

    Google Scholar 

  • Allen CM (1985) Purification and characterization of undecaprenyl-pyrophosphate synthetase. Methods Enzymol. 110: 281-299

    Google Scholar 

  • Adam A, Petit JF, Lefrancier P & Lederer E (1981) Muramyl peptides. Mol. Cell. Biochem. 41: 27-47

    Google Scholar 

  • Allen NE, Hobbs JN Jr, Richardson JM & Riggin RM (1992) Biosynthesis of modified peptidoglycan precursors by vancomycin-resistant Enterococcus faecium. FEMS Microbiol. Lett. 98: 109-116

    Google Scholar 

  • Amano K, Hayashi H, Araki Y & Ito E (1977) The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozyme. Eur. J. Biochem. 76: 299-307

    Google Scholar 

  • Aono R and Ohtani M (1990) Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem. J. 15: 933-936

    Google Scholar 

  • Apfel CM, Takacs B, Fountoulakis M, Stieger M & Keck W (1999) Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression and characterization of the essential uppS gene. J. Bacteriol. 181: 483-492

    Google Scholar 

  • Araki Y, Oba S and Ito E (1980) Enzymatic deacetylation of N-acetylglucosamine residues in cell wall peptidoglycan. J. Biochem. Tokyo 88: 469-479

    Google Scholar 

  • Archibald AR (1976) Cell wall assembly in Bacillus subtilis: development of bacteriophage-binding properties as a result of the pulsed incorporation of teichoic acid. J. Bacteriol. 127: 956-960

    Google Scholar 

  • Archibald AR and Baddiley J (1986) The teichoic acids. In: Wolfrom ML & Timpson RS, (Eds) Advances in Carbohydrate Chemistry. (pp 325-375). Academic Press, New York

    Google Scholar 

  • Archibald AR, Hancock IC & Harwood CR (1993) Cell wall structure, synthesis and turnover. In: Hoch JA & Losick R (Eds). (pp 381-410) Bacillus subtilis and other Gram-Positive Bacteria American Society for Microbiology, Washington, DC

    Google Scholar 

  • Armstrong JJ, Baddiley J, Buchanan JG, Carss B & Greenberg GR (1958) Isolation and structure of ribitol phosphate derivatives (teichoic acids) from bacterial cell walls. J. Chem. Soc. 4344-4354

  • Arthur M, Molinas C, Bugg TDH, Wright GD, Walsh CT & Courvalin P (1992) Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 36: 867-869

    Google Scholar 

  • Arthur M, Molinas C, Depardieu F & Courvalin P (1993) Characterization of TN1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175: 117-127

    Google Scholar 

  • Arthur M, Reynolds P & Courvalin P (1996) Glycopeptide resistance in enterococci. Trends Microbiol 4: 401-407

    Google Scholar 

  • Ayala JA, Garrido T, de Pedro MA & Vicente M (1994) Molecular biology of bacterial septation. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall. Elsevier, Amsterdam, pp 73-101

    Google Scholar 

  • Baddiley J 1989. Bacterial cell walls and membranes. Discovery of the teichoic acids. BioEssays 10: 207-210

    Google Scholar 

  • Bahl H, Scholz H, Bayan N, Chami M, Leblon G & Gulik-Krzywicki T et al. (1997) Molecular biology of S-layers. FEMS Microbiol. Rev. 20: 47-98

    Google Scholar 

  • Begg KJ, Tagasuga A, Edwards DH, Dewar SJ, Spratt BG, Adachi H, Ohta T, Matsuzawa H & Donachie WD (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172: 6697-6703

    Google Scholar 

  • Béliveau C, Potvin C, Trudel J, Asselin A & Bellemare G (1991) Cloning, sequencing and expression in Escherichia coli of a Streptococcus faecalis autolysin. J. Bacteriol. 173: 5619-5623

    Google Scholar 

  • Beveridge T, Pouwels PH, Sara M, Kotiranta A, Lounatmaa K, Kari K et al. (1997) Functions of S-layers. FEMS Microbiol. Rev. 20: 99-149

    Google Scholar 

  • Bhakdi S, Klonisch P, Nuber P & Fischer W (1991) Stimulation of monokine production by lipoteichoic acids. Infect. Immun. 59: 4614-4620

    Google Scholar 

  • Bidnenko E, Mercier C, Tremblay J, Tailliez P & Kulakauskas S (1998) Estimation of the state of the bacterial cell wall by fluorescent in situ hybridization. Appl. Environ. Microbiol. 64: 3059-3062

    Google Scholar 

  • Bierbaum G and Sahl HG (1987) Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol. 169: 5452-5458

    Google Scholar 

  • Billot-Klein D, Gutmann L, Sable S, Guittet E & van Heijenoort J (1994) Modification of peptidoglycan precursor is a common feature of the low-level vancomycin-resistant VanB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J. Bacteriol. 176: 2398-2405

    Google Scholar 

  • Billot-Klein D, Shlaes D, Bryant D, van Heijenoort J & Gutmann L (1996) Peptidoglycan structure of Enterococcus faecium expressing vancomycin resistance of the VanB type. Biochem. J. 313: 711-715

    Google Scholar 

  • Billot-Klein D, Legrand R, School B, van Heijenoort J & Gutmann L (1997) Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. J. Bacteriol. 179: 6208-6212

    Google Scholar 

  • Blackman SA, Smith TJ & Foster SJ (1998) The role of autolysins during vegetative groth of Bacillus subtilis 168. Microbiology 144: 73-82

    Google Scholar 

  • Boot HJ and Pouwels PH (1996) Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol. Microbiol. 21: 1117-1123

    Google Scholar 

  • Boot HJ, Kolen CPAM, van Noort JM & Pouwels PH (1993) S-layer protein of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene. J. Bacteriol. 175: 6089-6096

    Google Scholar 

  • Boot HJ, Kolen CPAM & Pouwels PH (1995) Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J. Bacteriol. 177: 7222-7230

    Google Scholar 

  • Boot HJ, Kolen CPAM & Pouwels PH (1996a) Interchange of the active and silent S-layer protein genes of Lactobacillus acidophilus by inversion of the chromosomal slp segment. Mol. Microbiol. 21: 799-809

    Google Scholar 

  • Boot HJ, Kolen CPAM, Andreadaki FJ, Leer RJ & Pouwels PH (1996b) The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA. J. Bacteriol. 178: 5388-5394

    Google Scholar 

  • Bottazzi V (1988) An introduction to rod-shaped lactic-acid bacteria. Biochimie 70: 303-315

    Google Scholar 

  • Briehl M, Pooley HM & Karamata D (1989) Mutants of Bacillus subtilis 168 thermosensitive for growth and wall teichoic acid synthesis. J. Gen. Microbiol. 135: 1325-1334

    Google Scholar 

  • Bugg DH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P & Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance protein VanH and VanA. Biochemistry 30: 10408-10415

    Google Scholar 

  • Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G and Haandrikman AJ (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 177: 1554-1563

    Google Scholar 

  • Buist G, Karsens H, Nauta A, van Sinderen D, Venema G and Kok J (1997) Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl. Environ. Microbiol. 63: 2722-2728

    Google Scholar 

  • Buist G, Venema G & Kok J (1998) Autolysis of Lactococcus lactis is influenced by proteolysis. J. Bacteriol. 180: 5947-5953

    Google Scholar 

  • Callegari ML, Riboli B, Sanders JW, Cocconcelli PS, Kok J, Venema G & Morelli L (1998) The S-layer gene of Lactobacillus helveticus CNRZ 892: cloning, sequence and heterologous expression. Microbiology 144: 719-726

    Google Scholar 

  • Carias LL, Rudin SD, Donskey CJ & Rice LB (1998) Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enteroccoccus faecium isolate. J. Bacteriol. 180: 4426-4434

    Google Scholar 

  • Cassels FJ and London J (1989) Isolation of a coaggregation-inhibiting cell wall polysaccharide from Streptococcus sanguis H1. J. Bacteriol. 171: 4019-4025

    Google Scholar 

  • Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130

    Google Scholar 

  • Chapman G and Hillier J (1953) Electron microscopy of ultra-thin sections of bacteria. I. Cellular division in Bacillus cereus. J. Bacteriol. 66: 362-373

    Google Scholar 

  • Chapot-Chartier MP (1996) Les autolysines des bactéries lactiques. Lait 76: 91-109

    Google Scholar 

  • Childs WC III, Taron DJ & Neuhaus FC (1985) Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues. J. Bacteriol. 162: 1191-1195

    Google Scholar 

  • Chu CP, Kariyama R, Daneo-Moore L & Shockman GD (1992) Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. J. Bacteriol. 174: 1619-1625

    Google Scholar 

  • Clarke AJ & Dupont C (1992) O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can. J. Microbiol. 38: 85-91

    Google Scholar 

  • Coyette J and Ghuysen JM (1970) Structure of the walls of Lactobacillus acidophilus strain 63 AM Gasser. Biochemistry 9: 2935-2943

    Google Scholar 

  • Crow VL, Coolbear T, Gopal PK, Martley FG, McKay LL & Riepe H (1995) The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 5: 855-875

    Google Scholar 

  • de Vos WM, Underwood HM & Davies FL (1984) Plasmid-encoded bacteriophage resistance in Streptococcus cremoris SK11. FEMS Microbiol. Lett. 23: 175-179

    Google Scholar 

  • Demchick P & Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J. Bacteriol. 178: 768-773

    Google Scholar 

  • Dijkstra A & Keck W (1996) Peptidoglycan as a barrier to transenvelope transport. J. Bacteriol. 178: 5555-5562

    Google Scholar 

  • Douglas LJ & Wolin MJ (1971) Cell wall polymers and phage lysis of Lactobacillus plantarum. Biochemistry 10: 1551-1555

    Google Scholar 

  • Doyle RJ & Koch AL (1987) The functions of autolysins in the growth and division of Bacillus subtilis. CRC Crit. Rev. Microbiol. 15: 169-222

    Google Scholar 

  • Duez C, Thamm I, Sapunaric F, Coyette J & Ghuysen JM (1998) The division and cell wall gene cluster of Enterococcus hirae S185. DNA Sequence 9: 149-161

    Google Scholar 

  • Duwat P, Cochu A, Ehrlich SD & Grass A (1997) Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J. Bacteriol. 179: 4473-4479

    Google Scholar 

  • El Kharroubi A, Jacques P, Piras G, Van Beeumen J, Coyette J & Ghuysen JM (1991) The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem. J. 280: 463-469

    Google Scholar 

  • Fan DP (1970) Autolysin(s) of Bacillus subtilis as dechaining enzyme. J. Bacteriol. 103: 494-499

    Google Scholar 

  • Ferain T, Hobbs JN, Richardson J, Bernard N, Garmyn D, Hols P, Allen NE & Delcour J (1996) Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J. Bacteriol. 178: 5431-5437

    Google Scholar 

  • Ferrari E, Henner DJ & Yang MY (1985) Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Biotechnology 3: 1003-1007

    Google Scholar 

  • Fischer W (1981) Glycerophosphoglycolipids: presumptive biosynthetic precursors of lipoteichoic acids. In Shockman GD & Wacken AJ, (Eds). Chemistry and Biological Activities of Bacterial Surface Amphiphiles (pp 209-228). Academic Press, New York

    Google Scholar 

  • Fischer W (1988) Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29: 233-302

    Google Scholar 

  • Fischer W (1990) Bacterial phosphoglycolipids and lipoteichoic acids. In Kates M (Ed.) Handbook of lipid research: glycolipids, phospholipids and sulfoglycolipids (pp 123-234). Plenum Press, New York

    Google Scholar 

  • Fischer W (1994) Lipoteichoic acids and lipoglycans. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall. (pp 199-215). Elsevier, Amsterdam

    Google Scholar 

  • Fischer W, Rösel P & Koch HU (1981) Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J. Bacteriol. 146: 467-475

    Google Scholar 

  • Fotheringham IG, Bledig SA & Taylor PP (1998) Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J. Bacteriol. 180: 4319-4323

    Google Scholar 

  • Garcia E and Lopez R (1997) Molecular biology of the capsular genes of Streptococcus pneumoniae. FEMS Microbiol. Lett. 149: 1-10

    Google Scholar 

  • Gasson MJ (1996) Lytic systems in lactic acid bacteria and their bacteriophages. Antonie van Leeuwenhoek 70: 147-159

    Google Scholar 

  • Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32: 425-464

    Google Scholar 

  • Ghuysen JM (1991) Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37-667

    Google Scholar 

  • Giesbrecht P, Kersten T, Maidhof H & Wecke J (1998) Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. 62: 1371-1414

    Google Scholar 

  • Glaser P, Kunst F, Arnaud M, Coudart MP, Gonzales W, Hullo MF et al. (1993) Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol. Microbiol. 10: 371-384

    Google Scholar 

  • Goffin C & Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62: 1079-1093

    Google Scholar 

  • Gopal PK & Crow VL (1993) Characterization of loosely associated material from the cell surface of Lactococcus lactis subsp. cremoris E8 and its phage-resistant variant strain 398. Appl. Environ. Microbiol. 59: 3177-3182

    Google Scholar 

  • Graham LL & Beveridge TJ (1990) Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J. Bacteriol. 172: 2141-2149

    Google Scholar 

  • Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A & Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071-1077

    Google Scholar 

  • Grant WD (1979) Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis. J. Bacteriol. 137: 35-43

    Google Scholar 

  • Graumann P, Wendrich TM, Weber MHW, Schröder K & Marahiel MA (1997) A family of cold shcock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25: 741-756

    Google Scholar 

  • Green CJ & Void BS (1993) Staphylococcus aureus has clustered tRNA genes. J. Bacteriol. 175: 5091-5096

    Google Scholar 

  • Greene JD & Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60: 4487-4494

    Google Scholar 

  • Hakenbeck R (1994) Resistance to glycopeptide antibiotics. In Ghuysen JM & Hakenbeck R (Eds). Bacterial Cell Wall, (pp 535-558). Elsevier, Amsterdam

    Google Scholar 

  • Hall EA & Knox KW (1965) Properties of the polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei. Biochem. J. 96: 310-318

    Google Scholar 

  • Hamada S, Torii M & Kotani S et al. (1978) Lysis of Streptococcus mutans cells with mutanolysin, a lytic enzyme prepared from a culture liquor of Streptomyces globisporus 1829. Arch. Oral Biol. 23: 543-549

    Google Scholar 

  • Hamann L, El-Samalouti V, Ulme AJ, Flad HD & Rietschel ET (1998) Components of gut bacteria as immunomodulators. Int. J. Food Microbiol. 41: 141-154

    Google Scholar 

  • Handwerger S, Pucci MJ, Volk KJ, Liu J & Lee MS (1992) The cytoplasmic peptidoglycan precursor of vancomycin-resistant Enterococcus faecalis terminates in lactate. J. Bacteriol. 174: 5982-5984

    Google Scholar 

  • Handwerger S, Pucci MJ, Volk KJ, Liu J & Lee MS (1994) Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J. Bacteriol. 176: 260-264

    Google Scholar 

  • Healy VL, Park IS & Walsh CT (1998) Active-site mutants of the VanC2 D-alanyl-D-serine ligase, characteristic of one vancomycin-resistant bacterial phenotype, revert towards wild-type D-alanyl-D-alanine ligases. Chem. Biol. 5: 197-207

    Google Scholar 

  • Heaton MP & Neuhaus FC (1993) The significance of secondary cell wall polymers in gram-positive organisms: Lactobacillus casei as a model system for the study of D-alanyl-lipoteichoic acid biosynthesis and function. In: Foo EL et al. (Eds) The Lactic Acid Bacteria (pp 89-98). Horizon Scientific Press, Norfolk

    Google Scholar 

  • Heaton MP, Johnston RB & Thompson TL (1988) Controlled lysis of bacterial cells utilizing mutants with defective synthesis of D-alanine. Can. J. Microbiol. 34: 256-261

    Google Scholar 

  • Henderson B, Poole S & Wilson M (1996) Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 60: 316-341

    Google Scholar 

  • Henrichsen J (1995) Six new recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33: 2759-2762

    Google Scholar 

  • Heptmstall S, Archibald AR & Baddiley J (1970) Teichoic acids and membrane function in bacteria. Nature 225: 519-521

    Google Scholar 

  • Herbold DR & Glaser L (1975a) Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J. Biol. Chem. 250: 1676-1682

    Google Scholar 

  • Herbold DR & Glaser L (1975b) interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J. Biol. Chem. 250: 7231-7238

    Google Scholar 

  • Hols P, Defrenne C, Ferain T, Derzelle S, Delplace B & Delcour J (1997) The alanine racemase gene is essential for growth of Lactobacillus plantarum. J. Bacteriol. 179: 3039-3042

    Google Scholar 

  • Höltje JV (1996) Bacterial lysozymes. In: Joliès P (Ed). Lysozymes: model enzymes in biochemistry and biology (pp 65-74). Birkhäuser Verlag, Basel

    Google Scholar 

  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 181-203

    Google Scholar 

  • Höltje JV & Tomasz A (1975) Lipoteichoic acid: a specific inhibitor of autolysin activity inPneumococcus. Proc. Natl. Acad. Sci. USA 72: 1690-1694

    Google Scholar 

  • Höltje JV & Tuomanen EI (1991) The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137: 441-454

    Google Scholar 

  • Honeyman AL & Stewart GC (1989) The nucleotide sequence of he rodC operon of Bacillus subtilis. Mol. Microbiol. 3: 1257-1268

    Google Scholar 

  • Hughes AH, Hancock IC & Baddiley J (1970) Teichoic acids in cation control in bacterial membranes. Biochem. J. 132: 83-93

    Google Scholar 

  • Ishibashi K, Takesue S, Watanabe K & Oishi K (1982) Use of lectins to characterize the receptor sites for bacteriophage PL-1 of Lactobacillus casei. J. Gen. Microbiol. 128: 2251-2259

    Google Scholar 

  • Iwasaki H, Araki Y, Ito E, Nagaoka M & Yokokura T (1990) Structure of macroamphiphiles from several Bifidobacterium strains. J. Bacteriol. 171: 845-852

    Google Scholar 

  • Jolliffe LK, Doyle RJ & Streips UN (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753-763

    Google Scholar 

  • Joris B, Englebert S, Chu CP, Kariyama R, Daneo-Moore L, Shockman GD & Ghuysen JM (1992) Modular design of the Enteroccoccus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol. Lett. 91: 257-264

    Google Scholar 

  • Kahala M, Savijoki K & Palva A (1997) In vivo expression of the Lactobacillus brevis S-layer gene. J. Bacteriol. 179: 284-286

    Google Scholar 

  • Kawagishi S, Araki Y & Ito E (1980) Bacillus cereus autolytic endoglucosaminidase active on cell wall peptidoglycan with N-unsubstituted glucosamine residues. J. Bacteriol. 141: 137-143

    Google Scholar 

  • Kemper MA, Urrutia MM, Beveridge TJ, Koch AL & Doyle RJ (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J. Bacteriol. 175: 5690-5696

    Google Scholar 

  • Kleppe G, Vasstrand E & Jensen HB (1981) The specificity requirements of bacteriophage T4 lysozyme. Involvement of N-acetamido groups. Eur. J. Biochem. 119: 589-593

    Google Scholar 

  • Knox KW & Wicken AJ (1973) Immunological properties of teichoic acids. Bacteriol. Rev. 37: 215-257

    Google Scholar 

  • Koch AL (1985) How bacteria grow and divide in spite of internal hydrostatic pressure. Can. J. Microbiol. 31: 1071-1084

    Google Scholar 

  • Koch AL (1991) Effective growth by the simplest means: the bacterial way. ASM News 57: 633-637

    Google Scholar 

  • Koch AL (1995) Bacterial growth and form. Chapman & Hall, New York, 423 pp

    Google Scholar 

  • Koch AL & Woeste S (1992) Elasticity of the sacculus of Escherichia coli. J. Bacteriol. 174: 4811-4819

    Google Scholar 

  • Koch HU & Fischer W (1978) Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly(3-O-galabiosyl-2-O-galactosyl-sn-glycero-1-phosphate) chain from Streptococcus lactis Kiel 42172. Biochemistry 17: 5275-5281

    Google Scholar 

  • Koch HU, Doker R & Fischer W (1985) Maintenance of D-alanine ester substituion of lipoteichoic acid by re-esterification in Staphylococcus aureus. J. Bacteriol. 164: 1211-1217

    Google Scholar 

  • Kojima N, Araki Y & Ito E (1985a) Structural studies on the linkage unit of ribitol teichoic acid of Lactobacillus plantarum. Eur. J. Biochem. 148: 29-34

    Google Scholar 

  • Kojima N, Araki Y & Ito E (1985b) Structural studies on the acidic polysaccharide of Bacillus cereus AHU 1356 cell walls. Eur. J. Biochem. 148: 479-484

    Google Scholar 

  • Kojima N, Araki Y & Ito E (1986) Biosynthesis of the wall acidic polysaccharide in Bacillus cereus AHU 1356. Eur. J. Biochem. 155: 513-519

    Google Scholar 

  • Kolenbrander PE & London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175: 3247-3252

    Google Scholar 

  • Kotani S, Watanabe Y, Shimono T, Kinoshita F, Narita T, Kato K, Stewart-Tull DES & Morisaki I (1975) Immunoadjuvant activities of peptidoglycan subunits from the cell walls of Staphyloccus aureus and Lactobacillus plantarum. Biken J. 18: 93-103

    Google Scholar 

  • Krulwich TA, Ito M, Gilmour R & Guffanti AA (1997) Mechanisms of cytoplasmic pH regulation in alkalophilic strains of Bacillus. Extremophiles 1: 163-169

    Google Scholar 

  • Kullik I, Jenni R & Berger-Bächi B (1998) Sequence of putative alanine racemase operon in Staphylococcus aureus: insertional interruption of this operon reduces D-alanine substitution of lipoteichoic acid and autolysis. Gene 219: 9-17

    Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V et al. (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256

    Google Scholar 

  • Labischinski H & Maidhof H (1994) Bacterial peptidoglycan: overview and evolving concepts. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall (pp 23-38). Elsevier, Amsterdam

    Google Scholar 

  • Labischinski HR, Barnickel D, Naumann D & Keller P (1985) Conformational and topological aspects of the three-dimensional architecture of bacterial peptidoglycan. Ann. Inst. Pasteur Microbiol. 136A: 45-50

    Google Scholar 

  • Lambert PA, Hancock IC & Baddiley J (1975a) Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids. Biochem. J. 151: 671-676

    Google Scholar 

  • Lambert PA, Hancock IC & Baddiley J (1975b) The interaction of magnesium ions with teichoic acids. J. Biochem. 149: 519-524

    Google Scholar 

  • Lancefield RC (1933) A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med. 59: 571-591

    Google Scholar 

  • Lang WK, Glassey K & Archibald AR (1982) Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell walls. J. Bacteriol. 151: 367-375

    Google Scholar 

  • Lazarevic V & Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 16: 345-355

    Google Scholar 

  • Lazarevic V, Margot P, Soldo B & Karamata D (1992) Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138: 1949-1961

    Google Scholar 

  • Lazarevic V, Mauël C, Soldo B, Freymond PP, Margot P & Karamata D (1995) Sequence analysis of the 308° to 311° segment of the Bacillus subtilis 168 chromosome, a region devoted to cell wall metabolism, containing non-coding grey holes which reveal chromosomal rearrangements. Microbiology 141: 329-335

    Google Scholar 

  • Lepeuple AS, Van Gemert E & Chapot-Chartier MP 1998) Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl. Environ. Microbiol. 64: 4142-4148

    Google Scholar 

  • Ligozzi M, Pittaluga F & Fontana R (1993) Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J. Bacteriol. 175: 2046-2051

    Google Scholar 

  • Linnett PE & Strominger JL (1974) Amidation and cross-linking of the enzymatically synthesised peptidoglycan of Bacillus stearothermophilus. J. Biol. Chem. 249: 2489-2496

    Google Scholar 

  • Liu W, Eder S & Hulett FM (1998) Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J. Bacteriol. 180: 753-758

    Google Scholar 

  • Lleo MM, Fontana R & Solioz M (1995) Identification of a gene (arpU) controlling muramidase-2 export in Enterococcus hirae. J. Bacteriol. 177: 5912-5917

    Google Scholar 

  • Logardt IM & Neujahr HY (1975) Lysis of modified walls from Lactobacillus fermentum. J. Bacteriol. 124: 73-77

    Google Scholar 

  • Lortal S (1993) Crystalline surface-layers of the genus Lactobacillus. In: Beveridge TJ & Koval SF, (Eds). Advances in Bacterial Paracrystalline Surface Layers (pp 57-65). Plenum Press, New York

    Google Scholar 

  • Lortal S, Boyaval P & van Heijenoort J (1989) Influence de plusieurs facteurs sur l'autolyse de Lactobacillus helveticus CNRZ414. Lait 69: 223-231

    Google Scholar 

  • Lortal S, Rousseau M, Boyaval P & van Heijenoort J (1991) Cell wall and autolytic system of Lactobacillus helveticus ATCC 12046. J. Gen. Microbiol. 137: 549-559

    Google Scholar 

  • Lortal S, van Heijenoort J, Gruber K & Sleytr UB (1992) S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. J. Gen. Microbiol. 138: 611-618

    Google Scholar 

  • Lupas A (1996) A circular permutation event in the evolution of the SLH domain? Mol. Microbiol. 20: 897-898

    Google Scholar 

  • Lupas A, Engelhardt H, Peters J, Santarius U, Volker S & Baumeister W (1994) Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224-1233

    Google Scholar 

  • Ma D, Alberti M, Lynch C, Nikaido H & Hearst JE (1996) The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19: 101-112

    Google Scholar 

  • Margot P & Karamata D (1992) Identification of the structural genes for N-acetylmuramyl-L-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol. Gen. Genet. 232: 359-366

    Google Scholar 

  • Margot P, Mauël C & Karamata D (1994) The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol. Microbiol. 12: 535-545

    Google Scholar 

  • Massidda O, Kariyama R, Daneo-Moore L & Shockman GD (1996) Evidence that the PBP 5 synthesis repressor (psr) of Enterococcus hirae is also involved in the regulation of cell wall composition and other cell wall-related properties. J. Bacteriol. 178: 5272-5278

    Google Scholar 

  • Masuda K & Kawata T (1983) Distribution and chemical characterization of regular arrays in the cell walls of strains of the genus Lactobacillus. FEMS Microbiol. Lett. 20: 145-150

    Google Scholar 

  • Matsuhashi M (1994) Utilization of lipid-linked precursors and the formation of peptidoglycan in the process of cell growth and division: membrane enzymes involved in the final steps of peptidoglycan synthesis and the mechanism of their regulation. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall. (pp 55-71). Elsevier, Amsterdam

    Google Scholar 

  • Matsuhashi M, Dietrich CP & Strominger JL (1967) The role of soluble RNA and lipid intermediates in glycine incorporation in Staphylococcus aureus. J. Biol. Chem. 242: 3191-3206

    Google Scholar 

  • Mauël C, Young M, Margot P & Karamata D (1989) The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol. Gen. Genet. 215: 388-394

    Google Scholar 

  • Mauël C, Young M & Karamata D (1991) Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription uints. J. Gen. Microbiol. 137: 929-941

    Google Scholar 

  • McIntire FC, Crosby LK, Vatter AE, Cisar JO, McNeil MR, Bush CA, Tjoa SS & Fennessey PV (1988) A polysaccharide from Streptococcus sanguis 34 that inhibits coaggregation of S. sanguis 34 with Actinomyces viscosus T14V. J. Bacteriol. 170: 2229-2235

    Google Scholar 

  • Mechold U, Sterner K, Vetterman S & Malke H (1993) Genetic organization of the streptokinase region of the Streptococcus equisimilis H46A chromosome. Mol. Gen. Genet. 241: 129-140

    Google Scholar 

  • Mercenier A (1999) Lactic acid bacteria as live vaccines. In: Tannock G (Ed). Probiotics: A critical review Horizon (pp 113-127). Scientific Press, Wymondham, U.K.

    Google Scholar 

  • Mesnage S, Tosi-Couture E & Fouet A (1999) Production and cell surface anchoring of functional fusions beteen the SLH motifs of the Bacillus anthracis S-layer proteins and the Bacillus subtilis levansucrase. Mol. Microbiol. 31: 927-936

    Google Scholar 

  • Messer J & Reynolds PE (1992) Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol. Lett. 94: 195-200

    Google Scholar 

  • Messner P & Sleytr UB (1992) Crystalline bacterial cell-surface layers. Adv. Microb. Physiol. 33: 213-275

    Google Scholar 

  • Messner P, Allmaier G, Schäffer C, Wugeditsch T, Lortal S, König H, Niemetz R, Dorner M (1997) Biochemistry of layers. FEMS Microbiol. Rev. 20: 25-46

    Google Scholar 

  • Miörner H, Johansson G & Kronvall G (1983) Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci. Infect. Immun. 39: 336-343

    Google Scholar 

  • Monteville MR, Ardestani B & Geller BL (1994) Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl. Environ. Microbiol. 60: 3204-3211

    Google Scholar 

  • Mou L, Sullivan JJ & Rao GR (1976) Autolysis of Streptococcus cremoris. J. Dairy Res. 43: 275-282

    Google Scholar 

  • Mozes N & Lortal S (1995) X-ray photoelectron spectroscopy and biochemical analysis of the surface of Lactobacillus helveticus ATCC 12046. Microbiology 141: 11-19

    Google Scholar 

  • Murazumi N, Araki Y & Ito E (1986) Biosynthesis of the wall neutral polysaccharide in Bacillus cereus AHU 1356. Eur. J. Biochem. 161: 51-59

    Google Scholar 

  • Nagaoka M, Muto M, Nomoto K, Matuzaki T, Watanabe T & Yokokura T (1990) Structure of polysaccharide-peptidoglycan complex from the cell wall of Lactobacillus casei YIT9018. J. Biochem. 108: 568-571

    Google Scholar 

  • Nagaoka M, Shibata H, Kimura I, Hashimoto S, Kimura K, Sawada H & Yokokura T (1995) Structural studies on a cell wall polysaccharide from Bifidobacterium longum YIT4028. Carbohyd. Res. 274: 245-249

    Google Scholar 

  • Nagaoka M, Hashimoto S, Shibata H, Kimura I, Kimura K, Sawada H & Yokokura T (1996) Structure of a galactan from cell walls of Bifidobacterium catenulatum YIT4016. Carbohyd. Res. 281: 285-291

    Google Scholar 

  • Nanninga N (1998) Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 110-129

    Google Scholar 

  • Navarre WW & Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbiol. 14: 115-121

    Google Scholar 

  • Navarre WW & Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174-229

    Google Scholar 

  • Neuhaus FC (1985) Inter-chain transacylatiobn of D-alanine ester residues of lipoteichoic acid: a unique mechanism of membrane communication. Biochem. Soc. Trans. 13: 987-990

    Google Scholar 

  • Neuhaus FC, Heaton MP, Debarov DV & Zhang Q (1996) The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microbial Drug Resist. 2: 77-84

    Google Scholar 

  • Ntamere A, Taron DJ & Neuhaus FC (1987) Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile. J. Bacteriol. 169: 1702-1711

    Google Scholar 

  • Ostlie HM, Vegarud G & Langsrud T (1995) Autolysis of lactococci: detection of lytic enzymes by polyacrylamide gel electrophoresis and characterization in buffer systems. Appl. Environ. Microbiol. 61: 3598-3603

    Google Scholar 

  • Park W, Seto H, Hakenbeck R & Matsuhashi M (1985) Major peptidoglycan transglycosylase activity in Streptococcus pneumoniae that is not a penicillin binding protein. FEMS Microbiol. Lett. 27: 45-48

    Google Scholar 

  • Park IS, Lin CH & Walsh CT (1996) Gam of D-alanyl-D-lactate or D-lactyl-D-alanine synthetase activities in three active-site mutants of the Escherichia coli D-alanyl-D-alanine ligase B. Biochemistry 35: 10464-10471

    Google Scholar 

  • Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P & Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl. Environ. Microbiol. 63: 1725-1731

    Google Scholar 

  • Perego M, Glaser P, Minutello A, Strauch MA, Leopold K & Fischer W (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. J. Biol. Chem. 270: 15598-15606

    Google Scholar 

  • Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M & Grass A (1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J. Bacteriol. 179: 3068-3072

    Google Scholar 

  • Piras G, Raze D, El Kharroubi A, Hastir D, Englebert S, Coyette J & Ghuysen JM (1993) Cloning and sequencing of the low-affinity penicillin-binding protein 3r-encoding gene of Enterococcus hirae S185: modular design and structural organization of the protein. J. Bacteriol. 175: 2844-2852

    Google Scholar 

  • Pisabarro AG, De Pedro MA & Ishiguro EE (1990) Dissociation of the ampicillin-induced lysis of amino acid-deprived Escherichia coli into two stages. J. Bacteriol. 172: 2187-2190

    Google Scholar 

  • Pooley HM & Karamata D (1994) Teichoic acid synthesis in Bacillus subtilis: genetic organization and biological roles. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall (pp 187-198). Elsevier, Amsterdam

    Google Scholar 

  • Pooley HM, Paschoud D & Karamata D (1987) The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. J. Gen. Microbiol. 133: 3481-3493

    Google Scholar 

  • Pooley HM, Abellan FX & Karamata D (1991) A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J. Gen. Microbiol. 137: 921-928

    Google Scholar 

  • Pozzi G, Contorni M, Oggioni MR, Manganelli R, Tommasino M, Cavalieri F & Fischetti VA (1992) Delivery and expression of a heterologous antigen on the surface of streptococci. Infect. Immun. 60: 1902-1907

    Google Scholar 

  • Promadej N, Fiedler F, Cossart P, Dramsi S & Kathariou S (1999) Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b rrequires gtcA, a novel, serogroup-specific gene. J. Bacteriol. 181: 418-425

    Google Scholar 

  • Pucci MJ, Thanassi JA, Discotto LF, Kessler RE & Dougherty TJ (1997) Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J. Bacteriol. 179: 5632-5635

    Google Scholar 

  • Pum D & Sleytr UB (1999) The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol. 17: 8-12

    Google Scholar 

  • Qi Y & Hulett FM (1998) Role of PhoP-P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J. Bacteriol. 180: 4007-4010

    Google Scholar 

  • Rachel R, Pum D, Smarda J, Smajs D, Komrska J, Krzyzanek V, Rieger G & Stetter KO (1997) Fine structure of S-layers. FEMS Microbiol. Rev. 20: 13-23

    Google Scholar 

  • Raetz CRH (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In: Neidhardt FC, (Ed.) Escherichia coli and Salmonella, cellular and molecular biology. 2nd ed. (pp 1035-1063). ASM Press, Washington DC (USA)

    Google Scholar 

  • Redondo-Lopez V, Cook RL & Sobel JD (1990) Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial micro-flora. Rev. Infect. Dis. 12: 856-872

    Google Scholar 

  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raets CRH & Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 4: 495-503

    Google Scholar 

  • Riepe HR, Pillidge CJ, Gopal PK & McKay LL (1997) Characterization of the highly autolytic Lactococcus lactis subsp. cremoris strains CO and 2250. Appl. Environ. Microbiol. 63: 3757-3763

    Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50: 285-315

    Google Scholar 

  • Rosenberg M & Kjelleberg S (1986) Hydrophobic interactions: role in bacterial adhesion. Microbiol. Ecol. 9: 353-393

    Google Scholar 

  • Rothfield LI & Zhao CR (1996) How do bacteria decide where to divide? Cell 84: 183-186

    Google Scholar 

  • Rothfield LI & Justice SS (1997) Bacterial cell division: the cycle of the ring. Cell 88: 581-584

    Google Scholar 

  • Salton MRJ (1994) The bacterial cell envelope — a historical perspective. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall (pp 1-22). Elsevier, Amsterdam

    Google Scholar 

  • Sandholm E & Sarimo SS (1981) Autolysis of Streptococcus thermophilus. FEMS Microbiol. Lett. 11: 125-129

    Google Scholar 

  • Sara M, Egelseer EM, Dekitsch C & Sleytr UB (1998) Identification of two binding domains, one for peptidoglycan and another for a secondary cell wall polymer, on the N-terminal part of the Slayer protein SbsB from Bacillus stearothermophilus PV72/p2. J. Bacteriol. 180: 6780-6783

    Google Scholar 

  • Savijoki K, Kahala M & Palva A (1997) High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene 186: 255-262

    Google Scholar 

  • Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477

    Google Scholar 

  • Schleifer KH & Kilpper-Bälz R (1987) Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst. Appl. Microbiol. 10: 1-19

    Google Scholar 

  • Schwab JH (1993) Phlogistic properties of peptidoglycan-polysaccharide polymers from cell walls of pathogenic and normal-flora bacteria which colonize humans. Infect. Immun. 61: 4535-4539

    Google Scholar 

  • Shockman GD & Höltje JV (1994) Microbial peptidoglycan (murein) hydrolases. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall (pp 131-166). Elsevier, Amsterdam

    Google Scholar 

  • Shockman GD, Daneo-Moore L, Kariyama R & Massidda O (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb. Drag Resist. 2: 95-98

    Google Scholar 

  • Signoretto C, Boaretti M & Canepari C (1994) Cloning, sequencing and expression in Escherichia coli of the low affinity penicillin-binding protein of Enterococcus faecalis. FEMS Microbiol. Lett. 123: 99-106

    Google Scholar 

  • Sijtsma L, Sterkenburg A & Wouters JT (1988) Properties of the cell walls of Lactococcus lactis subsp. Cremoris SKI 10 and SKI 12 and their relation to bacteriophage resistance. Appl. Environ. Microbiol. 54: 2808-2811

    Google Scholar 

  • Sijtsma L, Wouters JTM & Hellingwerf KJ (1990) Isolation and characterization of lipoteichoic acid, a cell envelope component involved in preventing phage adsorption, from Lactococcus lactis subsp. cremoris SKI 10. J. Bacteriol. 172: 7126-7130

    Google Scholar 

  • Sleytr UB (1997) Basic and applied S-layer research: an overview. FEMS Microbiol. Rev. 20: 5-12

    Google Scholar 

  • Sleytr UB & Sara M (1997) Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol. 15: 20-26

    Google Scholar 

  • Sleytr UB, Messner P, Pum D & Sara M (1993) Crystalline bacterial cell surface layers. Mol. Microbriol. 10: 911-916

    Google Scholar 

  • Sleytr UB, Bayley H, Sara M, Breitwieser A, Küpcü S, Mader C. et al. (1997) Applications of S-layers. FEMS Microbiol. Rev. 20: 151-175

    Google Scholar 

  • Sneath PHA, Mair NS, Sharpe ME & Holt JG (Eds.) (1986) Bergey's manual of systematic bacteriology (Vol. 2). Williams and Wilkins, Baltimore

    Google Scholar 

  • Soldo B, Lazarevic V, Pagni M & Karamata D (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31: 795-805

    Google Scholar 

  • Stahl S & Uhlen M (1997) Bacterial surface display: trends and progress. Trends Biotechnol. 15: 185-192

    Google Scholar 

  • Steidler L, Viaene J, Fiers W & Remaut E (1998) Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus Protein A. Appl. Environ. Microbiol. 64: 342-345

    Google Scholar 

  • Stimpson SA, Brown RR, Anderle SK, Klapper DG, Clark RL, Cromartie WJ & Schwab JH (1986) Arthropathic properties of cell wall polymers from normal flora bacteria. Infect. Immun. 51: 240-249

    Google Scholar 

  • Stingele F & Mollet B (1996) Disruption of the gene encoding penicillin-binding protein 2b (pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6. Mol. Microbiol. 22: 357-366

    Google Scholar 

  • Stingele F, Neeser JR & Mollet B (1996) Identification and Characterization of the eps (Exopolysaccharide) Gene Cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178: 1680-1690

    Google Scholar 

  • Sutcliffe IC & Shaw N (1991) Atypical lipoteichoic acids of gram-positive bacteria. J. Bacteriol. 173: 7065-7069

    Google Scholar 

  • Tannock G (Ed.) (1999) Probiotics: A critical review. Horizon Scientific Press, Wymondham, U.K.

    Google Scholar 

  • Toba T, Virkola R, Westerlund B, Björkman Y, Sillanpää J, Vartio T, Kalkkinen N & Korhonen TK (1995) A collagen-binding S-layer protein in Lactobacillus crispatus. Appl. Environ. Microbiol. 61: 2467-2471

    Google Scholar 

  • Tsukioka Y, Yamashita Y, Oho T, Nakano Y & Koga T (1997a) Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans. J. Bacteriol. 179: 1126-1134

    Google Scholar 

  • Tsukioka Y, Yamashita Y, Nakano Y, Oho T & Koga T (1997b) Identification of a fourth gene involved in dTDP-rhamnose synthesis in Streptococcus mutans. J. Bacteriol. 179: 4411-4414

    Google Scholar 

  • Tsutsui O, Kikeguchi S, Matsumara K & Kato K (1991) Relationship of the chemical structure and immunobiological activities of lipoteichoic acid from Streptococcus faecalis (Enterococcus hirae) ATCC 9790. FEMS Microbiol. Immunol. 76: 211-218

    Google Scholar 

  • Urrutia MM, Kemper M, Doyle R & Bevendge TJ (1992) The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Appl. Environ. Microbiol. 58: 3837-3844

    Google Scholar 

  • Valence F & Lortal S (1995) Zymogram and preliminary characterization of Lactobacillus helveticus autolysins. Appl. Environ. Microbiol. 61: 3391-3399

    Google Scholar 

  • Valyasevi R, Sandine WE & Geller BL (1990) The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56: 1882-1889

    Google Scholar 

  • van Heijenoort J (1994) Biosynthesis of the bacterial peptidoglycan unit. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall (pp 39-54). Elsevier, Amsterdam

    Google Scholar 

  • Van Kranenburg R, Marugg JD, van Swan II, Willem NJ & de Vos WM (1997) Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24: 387-397

    Google Scholar 

  • Vegarud G, Castberg HB & Langsrud T (1983) Autolysis of group N Streptococci. Effects of media composition modifications and temperature. J. Dairy Sci. 66: 2294-2302

    Google Scholar 

  • Vidgren G, Palva I, Pakkanen R, Lounatmaa K & Palva A (1992) S-layer protein gene of Lactobacillus brevis: cloning by polymerase chain reaction and determination of the nucleotide sequence. J. Bacteriol. 174: 7419-7427

    Google Scholar 

  • Ward JB (1973) The chain length of glycans in bacterial cell walls. Biochem. J. 133: 395-398

    Google Scholar 

  • Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol. Rev. 45: 211-243

    Google Scholar 

  • Wecke J, Perego M & Fischer W (1996) D-alanine deprivation of Bacillus subtilis teichoic acid is without effect on cell growth and morphology but affects the autolytic activity. Microb. Drug Resist. 2: 123-129

    Google Scholar 

  • Wecke J, Madela K & Fischer W (1997) The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143: 2953-2960

    Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can. J. Microbiol. 34: 415-420

    Google Scholar 

  • Whittaker CJ, Klier CM & Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50: 513-552

    Google Scholar 

  • Wicken AJ & Knox KW (1970) Studies in the group F antigen of lactobacilli: isolation of a teichoic acid-lipid complex from Lactobacillus fermenti NCTC6991. J. Gen. Microbiol. 60: 293-301

    Google Scholar 

  • Wicken AJ & Knox KW (1975) Lipoteichoic acids: a new class of bacterial antigen. Science 187: 1161-1167

    Google Scholar 

  • Wicken AJ & Knox KW (1980) Bacterial cell surface amphiphiles. Biochim. Biophys. Acta 604: 1-26

    Google Scholar 

  • Wicken AJ, Ayres A, Campbell LK & Knox KW (1983) Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus. J. Bacteriol. 153: 84-92

    Google Scholar 

  • Wicken AJ, Evans JD & Knox KW (1986) Critical micelle concentrations of lipoteichoic acids. J. Bacteriol. 166: 72-77

    Google Scholar 

  • Yamada M, Hirose A & Matsuashi M (1975) Association of lack of cell wall teichuronic acid with formation of cell packets of Micrococcus lysodeikticus (luteus) mutants. J. Bacteriol. 123: 678-686

    Google Scholar 

  • Yamanaka K, Araki J, Takano M & Sekiguchi J (1997) Characterization of Bacillus subtilis mutants resistant to cold shock-induced autolysis. FEMS Microbiol. Lett. 150: 269-275

    Google Scholar 

  • Yamashita Y, Tsukioka Y, Nakano Y, Tomihisa K, Oho T & Koga T (1998a) Biological functions of UDP-glucose synthesis in Streptococcus mutans. Microbiology 144: 1235-1245

    Google Scholar 

  • Yamashita Y, Tsukioka Y, Tomihisa K, Nakano Y & Koga T (1998b) Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans. J. Bacteriol. 180: 5803-5807

    Google Scholar 

  • Yasui T, Yoda K & Kamiya T (1995) Analysis of S-layer proteins of Lactobacillus brevis. FEMS Microbiol. Lett. 133: 181-186

    Google Scholar 

  • Young FE (1967) Requirement of glycosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc. Natl. Acad. Sci. USA. 58: 2377-2384

    Google Scholar 

  • Young FE, Smith C & Reilly BE (1969) Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. J. Bacteriol. 98: 1087-1097

    Google Scholar 

  • Zipperle GF Jr, Ezzell JW Jr & Doyle RJ (1984) Glucosamine substitution and muramidase susceptibility in Bacillus anthracis. Can. J. Microbiol. 30: 553-559

    Google Scholar 

  • Zorzi W, Zhou XY, Dardenne O, Lamotte J, Raze D, Pierre J, Gutmann L & Coyette J (1996) Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J. Bacteriol. 178: 4948-4957

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Delcour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delcour, J., Ferain, T., Deghorain, M. et al. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76, 159–184 (1999). https://doi.org/10.1023/A:1002089722581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002089722581

Navigation