Skip to main content
Log in

Cosmic Time Variation of the Gravitational Constant

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A pre-relativistic cosmological approach to electromagnetism and gravitation is explored that leads to a cosmic time variation of the fundamental constants. Space itself is supposed to have physical substance, which manifests by its permeability. The scale factors of the permeability tensor induce a time variation of the fundamental constants. Atomic radii, periods, and energy levels scale in cosmic time, which results in dispersionless redshifts without invoking a space expansion. Hubble constant and deceleration parameter are reviewed in this context. The time variation of the gravitational constant at the present epoch can be expressed in terms of these quantities. This provides a completely new way to restrain the deceleration parameter from laboratory bounds on the time variation of the gravitational constant. This variation also affects the redshift dependence of angular diameters and the surface brightness, and we study in some detail the redshift scaling of the linear sizes of radio sources. The effect of the varying constants on source counts is discussed, and an estimate on the curvature radius of the hyperbolic3-space is inferred from the peak in the quasar distribution. The background radiation in this dispersionless, permeable space-time stays perfectly Planckian. Cosmic time is discussed in terms of atomic and gravitational clocks, as well as cosmological age dating, in particular how the age of the Universe relates to the age of the Galaxy in a permeable space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahcall, J.N., Pinsonneault, M.H. and Wasserburg, G.J.: 1995, Solar models with helium and heavy element diffusion, Rev.Mod.Phys. 67, 781.

    Article  ADS  Google Scholar 

  • Barthel, P.D. and Miley, G.K.: 1988, Evolution of radio structure in quasars, Nature 333, 319.

    Article  ADS  Google Scholar 

  • Caso, C., et al.: 1998, Review of particle physics, Eur.Phys.J.C 3, 1.

    Google Scholar 

  • Chandrasekhar, S.: 1967, An Introduction to the Study of Stellar Structure, Dover Publ., New York.

    Google Scholar 

  • Cowan, J.J., et al.: 1997, The thorium chronometer in CS 22892–052: Estimates of the age of the Galaxy, Astrophys.J. 480, 246.

    Article  ADS  Google Scholar 

  • Cowan, J.J., et al.: 1999, R-process abundances and chronometers in metal-poor stars, Astrophys.J. 521, 194.

    Article  ADS  Google Scholar 

  • Dabrowski, Y., Lasenby, A. and Saunders, R.: 1995, Testing the angular-size versus redshift relation with compact radio sources, Mon.Not.R.Astron.Soc. 277, 753.

    ADS  Google Scholar 

  • Davies, P.C.W.: 1972, Time variation of the coupling constants, J.Phys.A 5, 1296.

    Article  ADS  Google Scholar 

  • Degl'Innocenti, S., et al.: 1996, Time variation of Newton's constant and the age of globular clusters, Astron.Astrophys. 312, 345.

    ADS  Google Scholar 

  • Dickey, J.O., et al.: 1994, Lunar laser ranging: A continuing legacy of the Apollo program, Science 265, 482.

    ADS  Google Scholar 

  • Dirac, P.A.M.: 1937, The cosmological constants, Nature 139, 323; also in: R.H. Dalitz (ed.), The Collected Works of P.A.M.Dirac, 1924–1948, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  • Dirac, P.A.M.: 1974, Cosmological models and the Large Numbers hypothesis, Proc.Roy.Soc.(London) A 338, 439.

    ADS  Google Scholar 

  • Dyson, F.J.: 1972, The fundamental constants and their time variation, in: A. Salam and E.P. Wigner (eds.), Aspects of Quantum Theory, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • García-Berro, E., et al.: 1995, The rate of change of the gravitational constant and the cooling of white dwarfs, Mon.Not.R.Astron.Soc. 277, 801.

    ADS  Google Scholar 

  • Guenther, D.B., Krauss, L.M. and Demarque, P.: 1998, Testing the constancy of the gravitational constant using helioseismology, Astrophys.J. 498, 871.

    Article  ADS  Google Scholar 

  • Hartwick, F.D. and Schade, D.: 1990, The space distribution of quasars, Annu.Rev.Astron.Astrophys. 28, 437.

    Article  ADS  Google Scholar 

  • Irvine, J.M.: 1983, Limits on the variability of coupling constants from the Oklo natural reactor, Phil.Trans.Roy.Soc.(London) A 310, 239.

    ADS  Google Scholar 

  • Kaspi, V.M., Taylor, J.H. and Ryba, M.F.: 1994, High-precision timing of millisecond pulsars, Astrophys.J. 428, 713.

    Article  ADS  Google Scholar 

  • Kasting, J.F. and Grinspoon, D.H.: 1991, The faint young sun problem, in: C.P. Sonett et al. (eds.), The Sun in Time, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Lindner, M., et al.: 1986, Direct laboratory determination of the 187Re half-life, Nature 320, 246.

    Article  Google Scholar 

  • Lineweaver, C.H.: 1999, A younger age for the Universe, Science 284, 1503.

    Article  ADS  Google Scholar 

  • Maloney, A. and Petrosian, V.: 1999, The evolution and luminosity function of quasars from complete optical surveys, Astrophys.J. 518, 32.

    Article  ADS  Google Scholar 

  • McElhinny, M.W., Taylor, S.R. and Stevenson, D.J.: 1978, Limits on the expansion of Earth, Moon, Mars & Mercury and to changes in the gravitational constant, Nature 271, 316.

    Article  ADS  Google Scholar 

  • Moles, M., et al.: 1998, On the use of scaling relations for the Tolman test, Astrophys.J.Lett. 495, L31.

    Article  ADS  Google Scholar 

  • Mould, J., Freedman, W. and Kennicutt, R.: 2000, Calibration of the extragalactic distance scale, Rep.Prog.Phys., to appear.

  • Neeser, M.J., et al.: 1995, The linear-size evolution of classical double radio sources, Astrophys.J. 451, 76.

    Article  ADS  Google Scholar 

  • Newman, M.J. and Rood, R.T.: 1977, Implications of solar evolution for the Earth's early atmosphere, Science 198, 1035.

    ADS  Google Scholar 

  • Perlmutter, S., et al.: 1999, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys.J. 517, 565.

    Article  ADS  Google Scholar 

  • Petrosian, V.: 1998, New & old tests of cosmological models and the evolution of galaxies, Astrophys.J. 507, 1.

    Article  ADS  Google Scholar 

  • Prestage, J.D., Tjoelker, R.L. and Maleki, L.: 1995, Atomic clocks and variations of the fine structure constant, Phys.Rev.Lett. 74, 3511.

    Article  ADS  Google Scholar 

  • Riess, A.G., et al.: 1998, Observational evidence from supernovae for an accelerating universe, Astron.J. 116, 1009.

    Article  ADS  Google Scholar 

  • Robertson, H.P. and Noonan, T.W.: 1968, Relativity and Cosmology, Saunders, Philadelphia.

    Google Scholar 

  • Sagan, C. and Chyba, C.: 1997, The early faint sun paradox, Science 276, 1217.

    Article  ADS  Google Scholar 

  • Sandage, A.: 1988, Observational tests of world models, Annu.Rev.Astron.Astrophys. 26, 561.

    Article  ADS  Google Scholar 

  • Sandage, A. and Perelmuter, J.-M.: 1991, The surface brightness test for the expansion of the universe, Astrophys.J. 370, 455.

    Article  ADS  Google Scholar 

  • Schmidt, M., Schneider, D.P. and Gunn, J.E.: 1995, Spectroscopic CCD surveys for quasars at large redshift, Astron.J. 110, 68.

    Article  ADS  Google Scholar 

  • Shapiro, I.I.: 1990, Solar system tests of GR, in: N. Ashby et al. (eds.), General Relativity and Gravitation, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Shlyakhter, A.J.: 1976, Direct test of the constancy of fundamental nuclear constants, Nature 264, 340.

    Article  ADS  Google Scholar 

  • Steigman, G.: 1978, A crucial test of the Dirac cosmologies, Astrophys.J. 221, 407.

    Article  ADS  Google Scholar 

  • Teller, E.: 1948, On the change of physical constants, Phys.Rev. 73, 801.

    Article  ADS  Google Scholar 

  • Thorsett, S.E.: 1996, The gravitational constant, the Chandrasekhar limit, and neutron star masses, Phys.Rev.Lett. 77, 1432.

    Article  ADS  Google Scholar 

  • Tomaschitz, R.: 1997, Chaos and topological evolution in cosmology, Int.J.Bifurcation & Chaos 7, 1847.

    Article  MATH  MathSciNet  Google Scholar 

  • Tomaschitz, R.: 1998a, Cosmic ether, Int.J.Theor.Phys. 37, 1121.

    Article  MATH  MathSciNet  Google Scholar 

  • Tomaschitz, R.: 1998b, Nonlinear, non-relativistic gravity, Chaos, Solitons & Fractals 9, 1199.

    Article  MATH  MathSciNet  Google Scholar 

  • Tomaschitz, R.: 1998c, Ether, luminosity and galactic source counts, Astrophys.Space Sci. 259, 255.

    Article  MATH  ADS  Google Scholar 

  • Tomaschitz, R.: 1999a, Cosmic tachyon background radiation, Int.J.Mod.Phys.A 14, 4275.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Tomaschitz, R.: 1999b, Tachyons in the Milne universe, Class.Quant.Grav. 16, 3349.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Tomaschitz, R.: 1999c, Interaction of tachyons with matter, Int.J.Mod.Phys.A 14, 5137.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • VandenBerg, D.A., Bolte, M. and Stetson, P.B.: 1996, The age of the galactic globular cluster system, Annu.Rev.Astron.Astrophys. 34, 461.

    Article  ADS  Google Scholar 

  • Varshalovich, D.A. and Potekhin, A.Y.: 1995, Cosmological variability of fundamental physical constants, Space Sci.Rev. 74, 259.

    Article  ADS  Google Scholar 

  • Weinberg, S.: 1972, Gravitation and Cosmology, Wiley, New York.

    Google Scholar 

  • Whittaker, E.: 1951, A History of the Theories of Aether and Electricity, Vol. 1, Thomas Nelson & Sons, London.

    Google Scholar 

  • Williams, J.G., Newhall, X.X. and Dickey, J.O.: 1996, Relativity parameters determined from lunar laser ranging, Phys.Rev.D 53, 6730.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaschitz, R. Cosmic Time Variation of the Gravitational Constant. Astrophysics and Space Science 271, 181–203 (2000). https://doi.org/10.1023/A:1002495020703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002495020703

Keywords

Navigation