Skip to main content
Log in

Development of receptoral responses in pigmented and albino guinea-pigs (Cavia porcellus)

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

We describe the postnatal development of the electroretinogram (ERG) receptoral response in the guinea pig. In addition, the time course and nature of maturation was compared between albino and pigmented strains to consider the role that melanogenesis might have in this process. Electroretinograms were collected on groups of albino and pigmented animals from postnatal day (PD) PD1 to PD60. A-wave amplitudes and implicit times were extracted from filtered data (0–75 Hz). Receptoral components were modelled using the delayed gaussian model of Hood and Birch [1] fitted as an ensemble to the raw data. Guinea pigs show saturated amplitudes (RmP3) that are 50% of adult values at birth, these mature by PD12. Receptoral delay (td) also undergoes some postnatal maturation, while phototransduction gain (log S) is adult-like at birth. Albino animals had significantly (p<0.05) larger RmP3 and log S across all ages. Guinea pigs have significant postnatal development in their receptoral response. Maturation of RmP3 implies a postnatal increase in rod outer segment length. Whereas the adult values of log S implies a mature phototransduction process at birth. We argue that the likely cause for the larger log S of albino eyes is compatible with theories of increased levels of internal light. Whereas the larger RmP3, even after allowing for increased light effectiveness, may reflect a lower ocular resistance in albino eyes due to their lower levels of melanin. Furthermore, decreased RmP3 and log S with age is observed in the pigmented group only and is consistent with increased ocular resistance due to melanin development in this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hood DC, Birch DG. The a-wave of the human ERG and rod receptor function. Invest Ophthalmol Vis Sci 1990; 31: 2070–2081.

    PubMed  CAS  Google Scholar 

  2. Leat WMF, Curtis R, Millichamp NJ, Cox RW. Retinal function in rats and guinea pigs reared on diets low in essential fatty acids and supplemented with linoleic or linolenic acids. Ann Nutr Metab 1986; 30: 166–174.

    Article  PubMed  CAS  Google Scholar 

  3. Jacobs GH, Deegan JFI. Spectral sensitivity, photopigments, and color vision in the guinea pig (Cavia porcellus). Behavioural Neurosci 1994; 108: 993–1004.

    Article  CAS  Google Scholar 

  4. Vingrys AJ, Weisinger HS, Sinclair AJ. In: Sinclair AJ Huang YS eds. Lipids and Infant Nutrition. Champaign, IL: AOCS Press, 1998: 85–99.

    Google Scholar 

  5. Weisinger HS, Vingrys AJ, Sinclair AJ. Effect of diet on the rate of depletion of n-3 fatty acids in the retina of the guinea pig. J Lipid Res 1998; 39: 1274–1279.

    PubMed  CAS  Google Scholar 

  6. Dassa J, Behn D, Casanova C, Lachapelle P. Maturation of the oscillatory potentials gradually shapes the unique morphology of the guinea pig's ERG. [ARVO Abstract]. Invest Ophthalmol Vis Sci 1998; 39: S132.

    Google Scholar 

  7. Bornschein VH. Zur postnatalen Entwicklung der Netzhautfunktion. Wien klin Wochen 1959; 49: 956–958.

    Google Scholar 

  8. Huang J, Wyse JP, Spira AW. Ontogenesis of the electroretinogram in a precocial mammal, the guinea pig (Cavia porcellus). Comp Biochem Physiol 1990; 95A: 149–153.

    Article  Google Scholar 

  9. van Hof MW, Usami E. in Proceedings of the 6th ISCERG symposium. (Erfurt. FRG, 1967) pp. 291–295.

  10. Hollenberg MJ, Spira AW. Human retinal development: Ultrastructure of the outer retina. Amer J Anat 1973; 137: 357–386.

    Article  PubMed  CAS  Google Scholar 

  11. Smelser GK, Ozanics V, Rayborn M, Sagun D. Retinal synaptogenesis in the primate. Invest Ophthalmol Vis Sci 1974; 13: 340–361.

    CAS  Google Scholar 

  12. Spira AW. In utero development and maturation of the retina of a non-primate mammal: a light and electron microscopic study of the guinea pig. Anat Embryol 1975; 146: 279–300.

    Article  PubMed  CAS  Google Scholar 

  13. Mactier H, Dexter JD, Hewett JE, Latham CB, Woodruff CW. The electroretinogram in preterm infants. J Pediatr 1988; 113: 607–612.

    Article  PubMed  CAS  Google Scholar 

  14. Persson HE, Stenberg D. Early prenatal development of cortical surface responses to visual stimuli in sheep. Exp Neurol 1972; 37: 199–203.

    Article  PubMed  CAS  Google Scholar 

  15. Sedlacek J. Cortical responses to visual stimulation in the guinea pig during the prenatal and perinatal period. Physiologia Bohemoslovaca 1971; 20: 213–220.

    PubMed  CAS  Google Scholar 

  16. Carmichael L. An experimental study in the prenatal guinea pig of the origin and development of reflexes and patterns of behaviour in relation to the stimulation of specific receptor areas during the period of active fetal life. Genet Psychol Monographs 1934; 16: 337–491.

    Google Scholar 

  17. Weidman TA, Kuwabara T. Development of the rat retina. Invest Ophthalmol Vis Sci 1969; 8: 60–69.

    CAS  Google Scholar 

  18. Weidman TA, Kuwabara T. Postnatal development of the rat retina. Arch Ophthalmol 1968; 79: 470–484.

    PubMed  CAS  Google Scholar 

  19. Donovan A. The postnatal development of the cat retina. Exp Eye Res 1966; 5: 249–254.

    PubMed  CAS  Google Scholar 

  20. Vogel M. Postnatal development of the cat's retina. Adv Anat Embryol Cell Biol 1978; 54: 1–56.

    PubMed  CAS  Google Scholar 

  21. Fulton AB, Hansen RM, Findl O. The development of the rod photoresponse from darkadapted rats. Invest Ophthalmol Vis Sci 1995; 36: 1038–1045.

    PubMed  CAS  Google Scholar 

  22. Ratto GM, Robinson DW, Yan B, Mcnaughton PA. Development of the light response in neonatal mammalian rods. Nature 1991; 351: 654–657.

    Article  PubMed  CAS  Google Scholar 

  23. Broekhuyse RM, Kuhlmann ED. Assay of S-antigen immunoreactivity in mammalian retinas in relation to age, ocular dimension and retinal degeneration. Jap J Ophthalmol 1989; 33: 243–250.

    CAS  Google Scholar 

  24. Bridges CDB. Visual pigments of some common laboratory mammals. Nature 1959; 184: 1727–1728.

    Article  PubMed  Google Scholar 

  25. Dodge J, Fulton AB, Parker C, Hansen RM, Williams TP. Rhodopsin in immature rod outer segments. Invest Ophthalmol Vis Sci 1996; 37: 1951–1956.

    PubMed  CAS  Google Scholar 

  26. Krill AE, Lee GB. The electroretinogram in albinos and carriers of the ocular albino trait. Arch Ophthalmol 1963; 69: 66–72.

    Google Scholar 

  27. Russel-Eggitt I, Kriss A, Taylor DSI.Albinism in childhood: a flash VEP and ERG study. Br J Ophthalmol 1990; 74: 136–140.

    Google Scholar 

  28. Creel DJ, Conlee JW, King RA. Dark adaptation in human albinos. Clin Vision Sci 1989; 5: 81–85.

    Google Scholar 

  29. Wack MA, Peachey NS, Fishman GA. Electroretinographic findings in human oculocutaneous albinism. Ophthalmology 1989; 96: 1778–1785.

    PubMed  CAS  Google Scholar 

  30. Wali N, Leguire LE. Fundus pigmentation and the electroretinogram luminanceresponse function. Doc Ophthalmol 1993; 84: 61–69.

    Article  PubMed  CAS  Google Scholar 

  31. Green DG, Herreros de Tejada P, Glover MJ. Electrophysiological estimates of visual sensitivity in albino and pigmented mice. Visual Neurosci 1994; 11: 919–925.

    CAS  Google Scholar 

  32. Weidner C. The presence of an albino ERG in the pigmented rat: genetic implication. J Physiol (Paris) 1981; 77: 813–821.

    CAS  Google Scholar 

  33. Dodt E, Echte K. Dark and light adaptation in pigmented and white rat as measured by electroretinogram threshold. J Neurophysiol 1961; 24: 427–445.

    PubMed  CAS  Google Scholar 

  34. Bui BV, Sinclair AJ, Vingrys AJ. Electroretinograms of albino and pigmented guinea pigs (Cavia porcellus). Australian and New Zealand Journal of Ophthalmology 1998; 26 (Suppl): S98–S100.

    PubMed  Google Scholar 

  35. Kugelman TP, Van Scott EJ. Tyrosinase activity in melanocytes of human albinos. J Invest Dermatol 1961; 37: 73–76.

    Article  PubMed  CAS  Google Scholar 

  36. Lyle WM, Sangster JOS, Williams TD. Albinism: an update and review of the literature. J Amer Optom Assoc 1997; 68: 623–645.

    CAS  Google Scholar 

  37. Ilia M, Jeffery G. Delayed neurogenesis in the albino retina: evidence of a role for melanin in regulating the pace of cell generation. Brain Res Dev Brain Res 1996; 95: 176–183.

    Article  PubMed  CAS  Google Scholar 

  38. Jeffery G, Darling K, Whitmore A. Melanin and the regulation of mammalian photoreceptor topography. Eur J Neurosci 1994; 6: 657–667.

    Article  PubMed  CAS  Google Scholar 

  39. Jeffery G. The albino retina: an abnormality that provides insight into normal retinal development. TINS 1997; 20: 165–169.

    PubMed  CAS  Google Scholar 

  40. National Health and Medical Research Council, Australian code of practice for the care and use of animals for scientific purposes. Canberra: Australian Government Publishing Service, 1990.

    Google Scholar 

  41. Bui BV, Weisinger HS, Vingrys AJ, Sinclair AJ. Comparison of guinea pig electroretinograms measured with bipolar corneal and unipolar intravitreal electrodes. Doc Ophthalmol 1998; 95: 15–34.

    Article  PubMed  CAS  Google Scholar 

  42. Marmor MF, Zrenner E. Standard for clinical electroretinography. Doc Ophthalmol 1995; 89: 199–210.

    Article  PubMed  CAS  Google Scholar 

  43. Hood DC, Birch DG. Light adaptation of human rod receptors: the leading edge of human a-wave and models of rod receptor activity. Vision Res 1993; 33: 1605–1618.

    Article  PubMed  CAS  Google Scholar 

  44. Hood DC, Birch DG. Computational models of rod-driven retinal activity. IEEE Engin Med Biol 1995; 14: 59–66.

    Article  Google Scholar 

  45. Lamb TD. Transduction in vertebrate photoreceptors: the roles of cyclic GMP and calcium. TINS 1986; 9: 224–228.

    CAS  Google Scholar 

  46. Lamb TD, Pugh ENJ. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol (Lond) 1992; 449: 719–758.

    PubMed  CAS  Google Scholar 

  47. Granit R. Components of the retinal action potential in mammals and their relations to the discharge in the optic nerve. J Physiol (Lond) 1933; 77: 207–238.

    PubMed  CAS  Google Scholar 

  48. Keppel G, Design and analysis: a researchers handbook. New Jersey: Prentice-Hall, 1982.

    Google Scholar 

  49. Hood DC, Birch DG. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Visual Neurosci 1990; 5: 379–387.

    Article  CAS  Google Scholar 

  50. Smith G, Atchison DA, The eye and visual optical instruments. Melbourne: Cambridge University Press, 1997.

    Google Scholar 

  51. Goto Y, Peachy NS, Ziroli NE, Seiple WH. Rod phototransduction in transgenic mice expressing a mutant opsin gene. J Opt Soc Amer A 1996; 13: 577–585.

    CAS  Google Scholar 

  52. Cideciyan AV, Jacobson SG. An alternative phototransduction model for human rod and cone ERG a-waves: Normal parameters and variation with age. Vision Res 1996; 36: 2609–2621.

    Article  PubMed  CAS  Google Scholar 

  53. Hood DC, Birch DG. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci 1994; 35: 2948–2961.

    PubMed  CAS  Google Scholar 

  54. Hamano K, Kiyama H, Emson PC, Manabe R, Nakauchi M, Tohyama M. Localization of two calcium binding proteins, Calbindin (28 kD) and Parvalbumin (12 kD), in the vertebrate retina. The Journal of Comparative Neurology 1990; 302: 417–424.

    Article  PubMed  CAS  Google Scholar 

  55. Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology 1984; 91: 603–612.

    PubMed  CAS  Google Scholar 

  56. Ordy JM, Samorajski T, Collins RL, Nagy AR. Postnatal development of vision in a subhuman primate (macaca mulatta). Arch Ophthalmol 1965; 73: 674–686.

    PubMed  CAS  Google Scholar 

  57. Hoglund G, Nilsson SE, Schwemer J. Visual pigment and visual receptor cells in adult sheep. Invest Ophthalmol Vis Sci 1982; 23: 409–418.

    PubMed  CAS  Google Scholar 

  58. Hauswirth WW, Langerijt AVD, Timmers AM, Adamus G, Ulshafer RJ. Early expression and localisation of rhodopsin and interphotoreceptor retinoid-binding protein (IRBP) in the developing fetal bovine retina. Exp Eye Res 1992; 54: 661–670.

    Article  PubMed  CAS  Google Scholar 

  59. Nusinowitz S, Birch DG, Birch EE. Rod photoresponses in 6-week and 4-month-old human infants. Vision Res 1998; 38: 627–635.

    Article  PubMed  CAS  Google Scholar 

  60. Breton ME, Quinn GE, Schueller AW. Development of electroretinogram and rod phototransduction response in human infants. Invest Ophthalmol Vis Sci 1995; 36: 1588–1602.

    PubMed  CAS  Google Scholar 

  61. Fulton AB, Graves AL. Background adaptation in developing rat retina: An electroretinographic study. Vision Res 1978; 20: 819–826.

    Article  Google Scholar 

  62. Gum HG, Gelatt KN, Samuelson DA. Maturation of the retina of the canine neonate as determined by electroretinography and histology. Amer J Vet Res 1984; 45: 1166–1171.

    PubMed  CAS  Google Scholar 

  63. Gorfinkel J, Lachapelle P, Molotchnikokk S. Maturation of the electroretinogram of the neonatal rabbit. Doc Ophthalmol 1988; 69: 237–245.

    Article  PubMed  CAS  Google Scholar 

  64. Hamasaki DI, Maguire GW. Physiological development of the kitten's retina: an ERG study. Vision Res 1985; 25: 1537–1543.

    Article  PubMed  CAS  Google Scholar 

  65. Fulton A, Hansen RM, Dorn E, Hendrickson A. In: Vital-Durrand F, ed. Infant Vision. New York: Oxford University Press, 1995: 33–49.

    Google Scholar 

  66. Faber DS. (State University of New York, Buffalo, 1969).

  67. Steinberg RH, Linsenmeier RA, Griff ER. Retinal pigment epithelial cell contributions to the electroretingram and electrooculogram. Prog Ret Res 1985; 4: 33–66.

    Article  Google Scholar 

  68. Breton ME, Schueller AW, Lamb TD, Pugh ENJ. Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. Invest Ophthalmol Vis Sci 1994; 35: 295–309.

    PubMed  CAS  Google Scholar 

  69. Hendrickson A, Drucker D. The development of the parafoveal and midperipheral human retina. Behav Brain Res 1992; 49: 21–31.

    PubMed  CAS  Google Scholar 

  70. Naash MI, Ripps H, Li S, Goto Y, Peachey NS. Polygenic disease and retinitis pigmentosa: Albinism exacerbates photoreceptor degeneration induced by the expression of a mutant opsin in transgenic mice. J Neurosci 1996; 16: 7853–7858.

    PubMed  CAS  Google Scholar 

  71. Wick MM, Byers L, Frei E. L-dopa: selective toxicity for melanoma cells in vitro. Science 1977; 197: 468–469.

    PubMed  CAS  Google Scholar 

  72. Akeo K, Tanaka Y, Okisaka S. A comparison between melanotic and amelanotic retinal pigment epithelial cells in vitro concerning the effects of L-dopa. Pigment Cell Res 1994; 7: 145–151.

    PubMed  CAS  Google Scholar 

  73. Jeffery G. The retinal pigment epithelium as a developmental regulator of the neural retina. Eye 1998; 12: 499–503.

    PubMed  Google Scholar 

  74. Esteve JV, Jeffery G. Reduced retinal deficits in an albino mammal with a cone rich retina: A study of the ganglion cell layer at the area centralis of pigmented and albino grey squirrels. Vision Res 1998; 38: 937–940.

    Article  PubMed  CAS  Google Scholar 

  75. Green DG, Herreros de Tejada P, Glover MJ. Are albino rats night blind? Invest Ophthalmol Vis Sci 1991; 32: 2366–2371.

    PubMed  CAS  Google Scholar 

  76. Wali N, Leguire LE. Fundus pigmentation and the dark-adapted electroretinogram. Doc Ophthalmol 1992; 80: 1–11.

    Article  PubMed  CAS  Google Scholar 

  77. Filtovs J, McGinness J, Corry P. Thermal and electronic contributions to switching in melanins. Biopolymers 1979; 15: 2309–2312.

    Article  Google Scholar 

  78. Reuter JH. The development of the electroretinogram in normal and light-deprived rabbits. Pflugers Arch Ophthalmol 1976; 363: 7–13.

    Article  CAS  Google Scholar 

  79. Vaegan. Electroretinograms and pattern electroretinograms of pigmented and albino rabbits. Clin Vision Sci 1992; 7: 305–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, B.V., Vingrys, A.J. Development of receptoral responses in pigmented and albino guinea-pigs (Cavia porcellus). Doc Ophthalmol 99, 151–170 (1999). https://doi.org/10.1023/A:1002721315955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002721315955

Navigation