Skip to main content
Log in

Electrochemical reduction of dichloromethane to higher hydrocarbons

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electroreduction of CH2Cl2 at Ni, Cu, Pt and Ag electrodes in acetonitrile and (C4H9)4NI 0.1m as supporting electrolyte was studied. The half-wave potential was found to be in the range −2.2 to −2.5V vs SCE at room temperature. From the analysis of the gaseous products it was found that methane, ethylene, chloromethane, propene and butene isomers were the main products, while at silver and platinum cathodes methane was mainly produced. The effect of the potential on the current efficiency of the gaseous products was also studied. The current efficiency of the products increases at concentration levels of CH2Cl2 up to 0.2m, whereas at higher values its CE is not significantly influenced. The application of the Schultz–Flory distribution analysis to the experimental data showed that the hydrocarbons are mainly formed via polymerization of methylene radicals on the surface of Ni and Cu electrodes. At Ag and Pt electrodes the mechanism appears to be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Wolf, ‘Methane Conversion by Oxidative Processes’, Van Norstrand Reinhold, New York (1992).

    Google Scholar 

  2. C. N. Satterfield, ‘Heterogeneous Catalysis in Industrial Practice’, 3rd edn, McGraw-Hill, New York (1991).

    Google Scholar 

  3. M. Goula, A. Lemonidou, A. Efstathiou, J. Catal. 161 (1996) 626.

    Google Scholar 

  4. M. Stoukides, J. Appl. Electrochem. 25 (1995) 899.

    Google Scholar 

  5. J. Anderson, Appl. Cat. 47 (1989) 177.

    Google Scholar 

  6. Kirk-Othmer, ‘Encyclopedia of Chemical Technology’, 3rd edn, J. Wiley & Sons, Vol. 5, New York (1978), pp. 668–93.

    Google Scholar 

  7. K. Ogura and K. Takamagari, Nature 319 (1986) 308.

    Google Scholar 

  8. P. Lersch and F. Bandermann, Appl. Catal. 75 (1991) 133.

    Google Scholar 

  9. M. White, L. Douglas, J. Hackett and R. Anderson, Energy & Fuels 6 (1992) 76.

    Google Scholar 

  10. Y. Soong, A. Blackwell, R. Scehehl and R. Noceti, Fuel Sci. Technol. Int. 11 (1993) 937.

    Google Scholar 

  11. J. Tavakoli and J. Doney, Chem. Engng Commun. 119 (1993) 135.

    Google Scholar 

  12. J. Tavakoli, M. Chiang, J. Bozzelli, Combust. Sci. Technol. 101 (1994) 13.

    Google Scholar 

  13. I. Kolthoff, T. Lee, D. Stoceva and E. Parry, Anal. Chem. 22 (1950) 521.

    Google Scholar 

  14. G. Girina, V. A. Kokorekina, Zh. I. Krinets, V. A. Petrosyan and L. G. Feoktistor, Elektrokhimiya 26 (1990) 1102.

    Google Scholar 

  15. J. Hine and S. Ehrenson, J. Am. Chem. Soc. 22 (1958) 824.

    Google Scholar 

  16. S. Wawzonek and R. Duty, J. Electrochem. Soc. 108 (1961) 1135.

    Google Scholar 

  17. Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc., Faraday Trans. I 85 (1989) 2309.

    Google Scholar 

  18. H. Fritz and W. Kornrumpf, Liebigs Ann. Chem. (1978) 1416.

  19. G. Horanyi and K. Torkos, J. Electroanal. Chem. 140 (1982) 329.

    Google Scholar 

  20. D. Coutagne, Bull. Soc. Chim. Fr. 38 (1971) 1940.

    Google Scholar 

  21. A. Kudo, S. Nakagawa, A. Tsuneto and T. Sakata J. Electrochem. Soc. 140 (1993) 1541.

    Google Scholar 

  22. P. Maitlis, H. C. Long, R. Quyoum, M. L. Turner and Z. Q. Wang, Chem. Commun. (1996) 1.

  23. R. B. Anderson, ‘The Fischer-Tropsch Synthesis’, Academic Press, Orlando (1984).

    Google Scholar 

  24. S. Wawzonek, R. Duty and J. Wagenknecht, J. Electrochem. Soc. 111 (1964) 74.

    Google Scholar 

  25. J. Nedelec, H. Moluloud, J. Folest and J. Perichon, J. Org. Chem. 53 (1988) 4720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsinaris, A., Kyriacou, G. & Lambrou, C. Electrochemical reduction of dichloromethane to higher hydrocarbons. Journal of Applied Electrochemistry 28, 613–616 (1998). https://doi.org/10.1023/A:1003202203067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003202203067

Navigation