Skip to main content
Log in

A printed circuit board approach to measuring current distribution in a fuel cell

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A new method of measuring current distribution in a polymer electrolyte fuel cell of active area 100cm2 has been demonstrated, using a printed circuit board (PCB) technology to segment the current collector and flow field. The PCB technique was demonstrated to be an effective approach to fabricating a segmented electrode and provide a useful tool for analysing cell performance at different reactant gas flow rates and humidification strategies. In this initial chapter of work with the segmented cell, we describe measured effects on current distribution of cathode and anode gas stream humidification levels in a hydrogen/air cell, utilizing a NafionTM 117 membrane and single serpentine channel flow fields, and operating at relatively high gas flow rates. Effects of the stoichiometric flow of air are also shown. A clear trend is seen, apparently typical for a thick ionomeric membrane, of lowering in membrane resistance down the flow channel, bringing about the highest local current density near the air outlet. This trend is reversed at low stoichiometric flows of air. At an air flow rate less than three times stoichiometry, the local performance starts to drop significantly from inlet to outlet, as local oxygen concentration drop overshadows the lowering in resistance along the direction of flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pletcher and F. C. Walsh, ‘Industrial Electrochemistry’, 2nd edn, Blackie (1990).

  2. A. Stock and F. Coeuret, Electrochim. Acta. 22 (1977) 1155.

    Google Scholar 

  3. L. R. Czarnetzki and L. J. J. Janssen, J. Appl. Electrochem. 19 (1989) 630.

    Google Scholar 

  4. W. W. Folke, Electrochimi. Acta. 28 (1983) 1137.

    Google Scholar 

  5. C. J. Brown, D. Pletcher, F. C. Walsh, J. K. Hammond and D. Robinson, J. Appl. Electrochem. 22 (1992) 613.

    Google Scholar 

  6. P. Adcock, P. Mitchell and J. Moore, Poster P1-30 of the Fuel Cell Seminar, San Diego, CA.

  7. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.

    Google Scholar 

  8. D. M. Bernardi and M. W. Verbrugge, AIChE J. 37 (1991) 1151.

    Google Scholar 

  9. T. V. Nguyen and R. E. White, J. Electrochem. Soc. 140 (1993) 2178.

    Google Scholar 

  10. T. F. Fuller and J. Newman, ibid. 140 (1993) 1218.

    Google Scholar 

  11. S. J. C. Cleghorn, C. R. Derouin, M. S. Wilson and S. Gottesfeld, San Antonio Meeting, Electrochemical Society (1996), Abstract 798.

  12. F. A. Uribe, T. E. Springer and S. Gottesfeld, J. Electrochem. Soc. 139 (1992) 765.

    Google Scholar 

  13. T. E. Springer, M. S. Wilson and S. Gottesfeld, ibid. 140 (1993) 3513.

    Google Scholar 

  14. C. Zawodzinski, M. S. Wilson and S. Gottesfeld, in ‘Proton Conducting Membrane Fuel Cells I’ (edited by S. Gottesfeld, G. Halpert and A. Landgrebe), The Electrochemical Society Proceedings Series, 95-23, (1995), p. 57.

  15. M. S. Wilson, J. A. Valerio and S. Gottesfeld, Electrochim. Acta. 40 (1995) 355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleghorn, S.J.C., Derouin, C.R., Wilson, M.S. et al. A printed circuit board approach to measuring current distribution in a fuel cell. Journal of Applied Electrochemistry 28, 663–672 (1998). https://doi.org/10.1023/A:1003206513954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003206513954

Navigation