Skip to main content
Log in

Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The potential of electroadsorption/desorption on activated carbon for waste water treatment of industrial effluents is studied. Adsorption isotherms of hydrophobic differently charged model substances on activated carbon were measured in order to obtain specific information about the influence of the charge (+1,−1 and 0) on the adsorbability of comparable, aromatic species and the influence of the bed potential on the adsorption equilibria. In all these cases the adsorption equilibria show a dependence on applied potential in electrolyte of approximately 1m ionic strength. With electrosorption from aqueous solution, a fivefold enhancement of the concentration in one potential controlled adsorption/desorption cycle is achievable. The use of the solvent methanol instead of water for desorption allows for a concentration enhancement by a factor of hundred in the desorptive step. The adsorption capacity of the activated carbon changes only slightly with cycle number. Two cell designs for the performance of potential controlled adsorption/desorption cycles on the large scale are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sontheimer, B. R. Frick, J. Fettig, G. Hörner, C. Hubele and G. Zimmer, Adsorptionsverfahren zur Wasserreinigung, DVGW-Forschungsstelle am Engler-Bunte-Institut der Universität Karlsruhe (TH) (1985).

  2. J. Boere (Norit N. V., Amersfoort, NL), Personal communication (1994).

  3. H. Wendt and P. Riemenschneider, Chem.-Ing.-Tech. 50 (1978) 250.

    Google Scholar 

  4. K. J. Vetter and J. W. Schultze, Ber. Bunsenges. Phys. Chem. 76 (1976) 920.

    Google Scholar 

  5. J. O'M. Bockris and A. K. N. Reddy, ‘Modern Electro-chemistry’, Vols 1 and 2, Plenum Press, New York (1970).

    Google Scholar 

  6. R. C. Alkire and R. S. Eisinger, J. Electrochem. Soc. 130 (1983) 85.

    Google Scholar 

  7. R. S. Eisinger and R. C. Alkire, J. Electroanal. Chem. 112 (1980) 327.

    Google Scholar 

  8. J. H. Strohl and K. L. Dunlap, Anal. Chem. 44 (1972) 2166.

    Google Scholar 

  9. V. V. Khabalov, A. A. Pershko, N. K. Gortshakova and V. Yu. Glushchenko, Izv. Akad. Nauk SSSR, Ser. Khim. No. 2 (1984) 263.

  10. P. J. Mayne and R. Shackleton, J. Appl. Electrochem. 15 (1985) 745.

    Google Scholar 

  11. J. McGuire, C. F. Dwiggins and P. S. Fedkiw, ibid. 15 (1985) 53.

    Google Scholar 

  12. R. M. Narbaitz and J. Cen, Wat. Res. 28 (1994) 1771.

    Google Scholar 

  13. V. V. Khabalov, N. P. Morgun, V. L. Zidacevskaya, A. P. Artem'yanov and V. Yu. Glushchenko, Khim. Tekhnol. Vody [Engl. trans.] 11 (1989) 27.

    Google Scholar 

  14. E. M. Novikova, K. A. Kazdobin, L. A. Klimenko, Yu. V. Maroresku and V. N. Belyakov, Ukr. Khim. Zh. [Engl. trans.] 56 (1990) 75.

    Google Scholar 

  15. K. T. Chue, G. Grevillot and D. Tondeur, in: DECHEMA e.V. (Ed.), Proceedings of the Fourth World Congress Chemical Engineering, Frankfurt/M. (1992) p. 992.

  16. N. Costarramone, S. Hazourli, G. Bonnecaze and M. Astruc, Environ. Technol. 15 (1994) 199.

    Google Scholar 

  17. I. G. Lisitskaya, L. P. Lazareva, N. K. Gorchakova, V. V. Khabalov and L. M. Vatrogova, Khim. Tekhnol. Vody 12 (1990) 3.

    Google Scholar 

  18. I. A. Tarkovskaya, V. E. Goba, V. Yu. Atamanyuk and T. V. Makhnovskaya, Khim Tekhnol. (Kiev) 177 (1991) 38.

    Google Scholar 

  19. J. Zabasajja and R. F. Savinell, AIChE J. 35 (1989) 755.

    Google Scholar 

  20. E. G. Abramov, Doklady Chem. Technol. 313 (1990) 79.

    Google Scholar 

  21. J. O. Besenhard, J. Jakob, P. Moeller and M. Wicher, DECHEMA Monographien 121 (1990) 355.

    Google Scholar 

  22. B. E. Reed and S. K. Nonavinakere, Sep. Sci. Technol. 27 (1992) 1985.

    Google Scholar 

  23. G. Grevillot, Adsorption: Science and Technology (1989) Verlag, p. 193.

  24. B. Kastening, Ber. Bunsenges. Phys. Chem. 92 (1988) 1399.

    Google Scholar 

  25. B. Kastening and M. Müller, J. Electroanal. Chem. 374 (1994) 159.

    Google Scholar 

  26. A. Schäfer, Dissertation, Tu Darmstadt, (1997).

  27. M. Müller and B. Kastening, J. Electroanal. Chem. 374 (1994) 149.

    Google Scholar 

  28. J. S. Mattson and H. B. Mark, ‘Activated Carbon: Surface Chemistry and Adsorption from Solution’, Marcel Dekker, New York (1971).

    Google Scholar 

  29. R. C. Weast (Ed.), ‘CRC Handbook of Chemistry and Physics’, 64th edn, CRC Press, Boca Raton, FL (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, A., Schafer, A. & Wendt, H. Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents. Journal of Applied Electrochemistry 28, 227–236 (1998). https://doi.org/10.1023/A:1003247229049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003247229049

Navigation