Skip to main content
Log in

Performance of a direct methanol fuel cell

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The performance of a direct methanol fuel cell based on a Nafion® solid polymer electrolyte membrane (SPE) is reported. The fuel cell utilizes a vaporized aqueous methanol fuel at a porous Pt–Ru–carbon catalyst anode. The effect of oxygen pressure, methanol/water vapour temperature and methanol concentration on the cell voltage and power output is described. A problem with the operation of the fuel cell with Nafion® proton conducting membranes is that of methanol crossover from the anode to the cathode through the polymer membrane. This causes a mixed potential at the cathode, can result in cathode flooding and represents a loss in fuel efficiency. To evaluate cell performance mathematical models are developed to predict the cell voltage, current density response of the fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Leger and C. Lamy, Berichte der Bunsen-Gesellschaft für Physikalische Chemie 94(9) (Sept. 1990) 1021–5.

    Google Scholar 

  2. D. S. Cameron, G. A. Hards, B. Harrison and R. J. Potter, Platinum Metal. Rev. 31(4) (Oct. 1987) 173–81.

    Google Scholar 

  3. G. L. Troughton and A. Hamnett, Bull Electrochem. 7 (1991) 488.

    Google Scholar 

  4. K. Scott, J. Cruickshank and P. C. Christensen, J. Power Sources (accepted).

  5. R. Savinell, J. S. Wainwright and S. Wasmus ‘Nafion/H3PO4 as a Fuel Cell Electrolyte for Elevated Temperature Operation’, ISE Conference, Oporto (1994), p. v-70.

    Google Scholar 

  6. Direct Methanol Fuel Cell Review Meeting, Department of Energy and Advanced Research Projects Agency, Baltimore, 26–27 Apr. (1994), Executive Summary.

  7. M. P. Hogarth, PhD thesis, Newcastle University (1996).

  8. G. L. Troughton, PhD thesis, University of Newcastle (1992).

  9. X. Ren, M. S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 143(1) (1996) L12.

    Google Scholar 

  10. K. Scott and P. Argyropoulos, in preparation for submission to J. Power Sources.

  11. Technical Software Distributors, NL3BAND. C nonlinear tridiagonal band solver, (1991).

  12. R. E. White, Ind. Eng. Chem. Fundam. 17 (1978) 367.

    Google Scholar 

  13. T. V. Nguyen and R. E. White, J. Electrochem. Soc. 140 (1993) 2178.

    Google Scholar 

  14. S. C. Yeo and A. Eisenberg, J. Appl. Polym. Sci. 21 (1977) 875.

    Google Scholar 

  15. T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.

    Google Scholar 

  16. T. A. Zawodzinski and T. E. Springer, ‘Modeling of Batteries and Fuel Cells’ (edited by R. E. White, M. W. Verbrugge and J. F. Stockel), P. V. 91–10, The Electrochemical Society, NJ, (1991), p. 187.

    Google Scholar 

  17. P. S. Kauranen and E. Skou, J. Appl. Electrochem. 26(9) (1996) 909.

    Google Scholar 

  18. A. Parthasarathy, S. Srinivasan, A. J. Appleby and C. R. Martin, J. Electrochem. Soc. 139 (1992) 2530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K., Taama, W. & Cruickshank, J. Performance of a direct methanol fuel cell. Journal of Applied Electrochemistry 28, 289–297 (1998). https://doi.org/10.1023/A:1003263632683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003263632683

Navigation