Skip to main content
Log in

Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolysed solution indicated the concentration of these metal ions to be 3μg L−1 or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called ‘supporting electrolyte’ was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode. This substitution permitted the electrolysis solution to be analysed by electrospray mass spectrometry (ESMS); however, as a consequence, electrolysis periods were excessively long. Total organic carbon (TOC) and chemical oxygen demand (COD) decreased to 1–2 mgL−1 after 64h of electrolysis. The solution pH changed from 5 to 4. Phenolic and carboxylic acid intermediate products such as hydroquinone, maleic acid, fumaric acid, succinic acid, malonic acid, acetic acid and formic acids were identified and quantified using solid phase microextraction with gas chromatography with mass spectrometric detection (GCMS) or liquid chromatography (LC) with conductivity detection, absorbance detection, or electrosprary mass spectrometry (ESMS). Less than 1% of the carbon in benzoquinone was converted to acetone and acetaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Blaney, L. Li, E. F. Gloyna and S. U. Hossain, ‘Innovations in Supercritical Fluids’ in ACS Symposium Series 608 (edited by K. W. Hutchenson and N. R. Foster), American Chemical Society, Washington, DC (1995), p. 444.

    Google Scholar 

  2. E. F. Gloyna and L. Li, Technical Report CWRW 245, Balcones Research Center, Austin, TX (1993).

    Google Scholar 

  3. S. Gopalan and P. E. Savage, AIChE J. 41 (1995) 1864.

    Google Scholar 

  4. T. D. Thornton and P. E. Savage, ibid. 38 (1992) 321.

    Google Scholar 

  5. Idem, Ind. Eng. Chem. Res. 31 (1992) 2451.

    Google Scholar 

  6. Z. Ding, S. N. V. K. Aki and M. A. Abraham, ‘Innovations in Supercritical Fluids,’ in ACS Symposium Series 608, (edited by K. W. Hutchenson and N. R. Foster), American Chemical Society: Washington, DC (1995), p. 232.

    Google Scholar 

  7. N. Crain, S. Tebbal, L. Li and E. F. Gloyna, Ind. Eng. Chem. Res. 32 (1993) 2259.

    Google Scholar 

  8. J. C. Meyer, P. A. Marrone and J. W. Tester, AIChE J. 41 (1995) 2108.

    Google Scholar 

  9. L. Jin, Y. T. Shah and M. A. Abraham, J. Supercrit. Fluids 3 (1990) 233.

    Google Scholar 

  10. D. M. Harradine, S. J. Buelow, P. C. Dell’Orco, R. B. Dyer, B. R. Foy and J. M. Robinson, Hazardous waste & Hazardous Mater. 10 (1993) 233.

    Google Scholar 

  11. M. Bekbolet, J. Environ. Sci. Health A31 (1996) 845.

    Google Scholar 

  12. A. Mills, S. Morris and R. Davies, J. Photochem. Photobiol. A: Chem 70 (1993) 183.

    Google Scholar 

  13. N. J. Peill and M. R. Hoffmann, Environ. Sci. Technol. 30 (1996) 2806.

    Google Scholar 

  14. A. Mills and R. Davis, J. Photochem. Photobiol. A: Chem. 85 (1995) 173.

    Google Scholar 

  15. A. Mills and P. Sawunyama, ibid. 84 (1994) 305.

    Google Scholar 

  16. U. Stafford, K. A. Gray and P. V. Kamat, J. Phys. Chem. 98 (1994) 6343.

    Google Scholar 

  17. J. Theurich, M. Lindner and D. W. Bahnemann, Langmuir 12 (1996) 6368.

    Google Scholar 

  18. C. Minero, E. Pelizzetti, P. Pichat, M. Sega and M. Vincenti, Environ. Sci. Technol. 29 (1995) 2226.

    Google Scholar 

  19. X. Pan, M. N. Schuchmann and C. von Sonntag, J. Chem. Soc. Perkin Trans. 2 (1993) 289.

    Google Scholar 

  20. C. Richard and P. Boule, New J. Chem. 18 (1994) 547.

    Google Scholar 

  21. L. Amalric, C. Guillard and P. Pichat, Res. Chem. Intermed. 21 (1995) 33.

    Google Scholar 

  22. D. Worsley, A. Mills, K. Smith and M. G. Hutchings, J. Chem. Soc., Chem. Commun. (1995) 1119.

  23. N. Serpone, T. Terzian, P. Colarusso, C. Minero, E. Pelizzetti and H. Hidaka, Res. Chem. Intermed. 18 (1992) 183.

    Google Scholar 

  24. Y. Nagata, K. Hirai, H. Bandow and Y. Maeda, Environ. Sci. Technol. 30 (1996) 1133.

    Google Scholar 

  25. D. M. Willberg, P. S. Lang, R. H. Hochemer, A. Kratel and M. R. Hoffman, ibid. 30 (1996) 2526.

    Google Scholar 

  26. L. Kaba, G. D. Hitchens and J. O'M. Bockris, J. Electrochem. Soc. 137 (1990) 1341.

    Google Scholar 

  27. R. Kotz, S. Stucki and B. Carcer, J. Appl. Electrochem. 21 (1991) 14.

    Google Scholar 

  28. Ch. Comninellis and C. Pulgarin, ibid. 23 (1993) 108.

    Google Scholar 

  29. Ch. Comninellis and A. De Battisti, J Chim. Phys. 93 (1996) 673.

    Google Scholar 

  30. K. Rajeshwar, J. G. Ibanez and G. M. Swain, J. Appl. Electrochem. 24 (1994) 1077.

    Google Scholar 

  31. J. R. Feng and D. C. Johnson, J. Electrochem. Soc. 138 (1991) 3328.

    Google Scholar 

  32. J. R. Feng, L. L. Houk, D. C. Johnson, S. N. Lowery and J. J. Carey, ibid. 142 (1995) 3626.

    Google Scholar 

  33. K. J. O'Leary, Chem. Abstr. 83 (1975) 34, 799w.

    Google Scholar 

  34. D. L. Lewis and C. R. Franks, Chem. Abstr. 94 (1980) 216, 618w.

    Google Scholar 

  35. K. Hu, P. S. Clemons and R. S. Houk, J. Am. Soc. Mass Spectrom. 4 (1993) 16.

    Google Scholar 

  36. R. S. Houk, Anal. Chem. 58 (1986) 97A.

    Google Scholar 

  37. S. K. Johnson, L. L Houk, J. Feng, D. C. Johnson and R. S. Houk, Anal. Chim. Acta 341 (1997) 205.

    Google Scholar 

  38. K. Kinoshita, Electrochemical Oxygen Technology, J. Wiley & Sons, New York (1992), p. 354.

    Google Scholar 

  39. Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.

    Google Scholar 

  40. R. C. Koile and D. C. Johnson, Anal. Chem. 51 (1979) 741.

    Google Scholar 

  41. D. Pletcher and F. C. Walsh, ‘Industrial Electrochemistry’, 2nd edn, Chapman Hall, New York (1990), pp. 141–157.

    Google Scholar 

  42. P. C. Foller and C. W. Tobias, J. Electrochem. Soc. 129 (1982) 506.

    Google Scholar 

  43. A. G. Ribin, E. A. Varvarina, E. N. Zilberman and A. V. Orlov, Izv. Vyssh. Uchebn. Zav. Khim. and Khimich. Tekhn. 33 (1990) 45.

    Google Scholar 

  44. K. C. Kurien and P. A. Robins, J. Chem. Soc. Phys. Org. B (1970) 855.

  45. I. M. Koltoff, E. B. Sandell, E. J. Meehan and S. Bruckenstein, ‘Quantitative Chemical Analysis’, 2nd edn, Macmillan, New York (1971).

    Google Scholar 

  46. A. P. Tomilov, S. G. Mairanovskii, M. Y. Fioshin and V. A. Smirnov, ‘Electrochemistry of Organic Compounds’, Halsted Press, New York (1972), p. 307.

    Google Scholar 

  47. R. Kanakam, M. S. V. Pathy and H. V. K. Udupa, Electrochim. Acta 12 (1967) 329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houk, L.L., Johnson, S.K., Feng, J. et al. Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte. Journal of Applied Electrochemistry 28, 1167–1177 (1998). https://doi.org/10.1023/A:1003439727317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003439727317

Keywords

Navigation