Skip to main content
Log in

PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The long term behaviour of two 100kW proton exchange membrane (PEM) water electrolyser plants is analysed. The systems had to be shut down due to problems with excessive levels of hydrogen in the oxygen product stream. The time to breakdown was different by a factor of nearly 10 from plant to plant. Post mortem analysis of the cell stacks revealed that the Nafion® 117 membrane is the weakest part in a PEM electrolyser regarding long term performance. Substantial thinning of the membranes in the stacks was detected. The degradation process was found to depend on the position within an individual cell, as well as of the position of the cell in the electrolyser stack. The dissolution process proceeds from the interface between the cathode and the membrane, is not specific with respect to the ion exchange groups, and is most likely triggered and/or enhanced by local stress on the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Oberlin, M. Fischer, ‘Status of the Membrel Process for Water Electrolysis’, Hydrogen Energy Progress VI, vol.1, (1986) pp. 333–40.

    Google Scholar 

  2. W. T. Grubb, US Pat. 2 913 511 (1959).

  3. G. G. Scherer, Chem.-Ing. Tech. 56 (1984) 538–9.

    Google Scholar 

  4. S. Stucki, G. Theis, R. Kötz, H. Devantay and H. J. Christen, J. Electrochem. Soc. 132 (1985) 367.

    Google Scholar 

  5. W. G. Grot, Chem. Ing. Techn. 47 (1975) 617.

    Google Scholar 

  6. A. Eisenberg and H. Yeager, (Eds), ‘Perfluorinated Ionomer Membranes’, ACS Symposium Series 180, American Chemical Society, Washington DC (1982).

    Google Scholar 

  7. T. D. Gierke, G. E. Munn and F. C. Wilson, J. Polym. Sci., Polym. Phys. Ed. 19 (1981) 1687.

    Google Scholar 

  8. W. H. Hsu and T. D. Gierke, J. Membr. Sci. 13 (1983) 307.

    Google Scholar 

  9. J. Halim, F. N. Büchi, O. Haas, M. Stamm and G. G. Scherer, Electrochim. Acta 39 (1994) 1303.

    Google Scholar 

  10. M. H. Litt, Meeting Abstracts, Fall Meeting of the Electrochemical Society, San Antonio, Texas, 6-11 Oct. (1996), Vol. 96-2, p. 188.

    Google Scholar 

  11. F. N. Büchi, M. Wakizoe and S. Srinivasan, J. Electrochem. Soc. 143 (1996) 927.

    Google Scholar 

  12. A. B. LaConti, A. R. Fragala and J. R. Boyack, in ‘Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage’ (edited by J. D. E. McIntyre, S. Srinivasan and F. G. Will), The Electrochemical Society, Princeton, NJ (1977), p. 354.

    Google Scholar 

  13. H. Grüne, Ext. Abstract, Fuel Cell Seminar 1992, Tucson Arizona, pp. 161–3.

  14. R. Kötz, S. Stucki, J. Appl. Electrochem. 17 (1987) 1190.

    Google Scholar 

  15. G. G. Scherer, H. Devantay, R. Oberlin and S. Stucki, ‘Wasserstoff-und Ozonerzeugung durch Membrel-Wasserelektrolyse’, Dechema Monographien, 98 (1985) pp. 407–15.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stucki, S., Scherer, G.G., Schlagowski, S. et al. PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants. Journal of Applied Electrochemistry 28, 1041–1049 (1998). https://doi.org/10.1023/A:1003477305336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003477305336

Keywords

Navigation