Skip to main content
Log in

Cosmological Relativity: A New Theory ofCosmology1

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A new general-relativistic theory of cosmology, the dynamical variables of whichare those of Hubble's, namely distances and redshifts, is presented. The theorydescribes the universe as having a three-phase evolution with a deceleratingexpansion followed by a constant and an accelerating expansion, and it predictsthat the universe is now in the latter phase. The theory is actually a generalizationof Hubble's law taking gravity into account by means of Einstein's theory ofgeneral relativity. The equations obtained for the universe expansion are elegantand very simple. It is shown, assuming Ω0 = 0.24, that the time at which theuniverse goes over from a decelerating to an accelerating expansion, i.e., theconstant expansion phase, occurs at 0.03 τ from the big bang, where τ is theHubble time in vacuum. Also, at that time the cosmic radiation temperature was11 K. Recent observations of distant supernovae imply, in defiance of expectations,that the universe's growth is accelerating, contrary to what has always beenassumed, that the expansion is slowing down due to gravity. Our theory confirmsthese recent experimental results by showing that the universe now is definitelyin a stage of accelerating expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Friedmann, A. (1922). Z. Phys. 10, 377; (1924) 21, 326.

    Google Scholar 

  2. Hubble, E. P. Proc. Natl. Acad. Sci. USA 15, 168 (1927); The Realm of the Nebulae (Yale University Press, New Haven, Connecticut, 1936) [reprinted, Dover, New York, 1958].

    Google Scholar 

  3. Sommerfeld, A. Thermodynamics and Statistical Mechanics (Academic Press, New York, 1956).

    Google Scholar 

  4. Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  5. Landau, L. D., and Lifshitz, E. M. The Classical Theory of Fields (Pergamon Press, Oxford, 1979).

    Google Scholar 

  6. Peebles, P. J. E. Principles of Physical Cosmology (Princeton University Press, Princeton, New Jersey, 1993).

    Google Scholar 

  7. Ohanian, H., and Ruffini, R. Gravitation and Spacetime (Norton, New York, 1994).

    Google Scholar 

  8. Carmeli, M. Classical Fields: General Relativity and Gauge Theory (Wiley, New York, 1982).

    Google Scholar 

  9. Papapetrou, A. Lectures on General Relativity (Reidel, Dordrecht, The Netherlands, 1974).

    Google Scholar 

  10. Struik, D. J. Lectures on Classical Differential Geometry (Addison-Wesley, Reading, Massachusetts, 1961).

    Google Scholar 

  11. Carmeli, M. (1995). Found. Phys. 25, 1029; (1996) 26, 413.

    Google Scholar 

  12. Carmeli, M. (1997). Int. J. Theor. Phys. 36, 757.

    Google Scholar 

  13. Carmeli, M. Cosmological Special Relativity: The Large-Scale Structure of Space, Time and Velocity (World Scientific, Singapore, 1997).

    Google Scholar 

  14. Carmeli, M. Inflation at the early universe, In COSMO-97: First International Workshop on Particle Physics and the Early Universe, Roszkowski, L., ed. (World Scientific, Singapore, 1998), p. 376.

    Google Scholar 

  15. Carmeli, M. Inflation and the early universe, In Sources and Detection of Dark Matter in the Universe, D. Cline, ed., (Elsevier, Amsterdam, 1998), p. 405.

    Google Scholar 

  16. Carmeli, M. Aspects of cosmological relativity, In Proceedings of the Fourth Alexander Friedmann International Seminar on Gravitation and Cosmology, Yu. N. Gnedin et al., eds. (Russian Academy of Sciences and the State University of Campinas, Brazil, 1999), pp. 155-169 [reprinted, Int. J. Theor. Phys. 38, 2005 (1999)].

    Google Scholar 

  17. Carmeli, M. (1997). Commun. Theor. Phys. 5, 159 (1996); 6, 45.

    Google Scholar 

  18. Freedman, W. L. HST highlight: The extragalactic distance scale, In Seventeenth Texas Symposium on Relativistic Astrophysics and Cosmology, Bo¨hringer, H., et al., eds. (New York Academy of Sciences, New York, 1995), p. 192.

    Google Scholar 

  19. Freedman, W. L., et al., (1994). Nature 371, 757.

    Google Scholar 

  20. Pierce, M., et al., (1994). Nature 371, 385.

    Google Scholar 

  21. Schmidt, B., et al., (1995). Astrophys. J. 432, 42.

    Google Scholar 

  22. Riess, A., et al., (1995). Astrophys. J. 438, L17.

    Google Scholar 

  23. Sandage, A., et al., (1992). Astrophys. J. 401, L7.

    Google Scholar 

  24. Branch, D. (1992). Astrophys. J. 392, 35.

    Google Scholar 

  25. Shmidt, B., et al., (1992). Astrophys. J. 395, 366.

    Google Scholar 

  26. Saha, A., et al., (1995). Astrophys. J. 438, 8.

    Google Scholar 

  27. Peebles, P. J. E. Status of the big bang cosmology, In Texas/Pascos 92: Relativistic Astrophysics and Particle Cosmology, Akerlof, C. W., and Srednicki, M. A., eds. (New York Academy of Sciences, New York, 1993), p. 84.

    Google Scholar 

  28. Riess, A. G., et al., (1998). Astron. J. 116, 1009.

    Google Scholar 

  29. Hogan, C. J., Kirshner, R. P., and Suntzeff, N. B. (1999). Sci. Am. 9, 46.

    Google Scholar 

  30. Einstein, A. Autobiographical Notes, In Albert Einstein Philosopher-Scientist, P. A. Schilpp, ed. (Open Court, La Salle and Chicago, Illinois, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behar, S., Carmeli, M. Cosmological Relativity: A New Theory ofCosmology1. International Journal of Theoretical Physics 39, 1375–1396 (2000). https://doi.org/10.1023/A:1003651222960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003651222960

Keywords

Navigation