Skip to main content
Log in

The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese lake: possibilities and effects

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Experiments with replanting macrophytes in Lake Chao showed that the water quality inside an Alternathera philoxeroides Griseb.and a Phragmites australis community were better than outside. Transparency was significantly higher and the content of N and P decreased inside the communities, as did the rate of sedimentation of organic suspended matter in the Phragmites australis community. Modeling revealed that macrophyte restoration could decrease phytoplaniton biomass, increase fish biomass, exergy, structural exergy, zooplankton/phytoplankton ratio and transparency (Xu et al., 1999b). It is concluded that macrophyte restoration can purify lake water, regulate lake biological structure and control eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, L. A., 1992. Introduction to nonpoint source pollution in the United States and prospects for wetland use. Ecol. Eng. 1: 1–26.

    Google Scholar 

  • Brix, H. & H.-H. Schierup. 1989. The use of aquatic macrophytes in water-pollution control. Ambio 18: 100–107.

    Google Scholar 

  • Carpenter, S. R., 1981. Submersed vegetation: an internal factor in lake ecosystem succession. Am. Nat. 118: 372–383.

    Google Scholar 

  • Clasen, J., W. Rast & S. O. Ryding, 1989. Available techniques for treating eutrophication. In: Ruding S. O. & W. Rast (eds), The Control of Eutrophication of Lakes and Reservoirs. Man and the Biosphere Series vol. 1. UNESCO. Paris: 264 pp.

    Google Scholar 

  • Conley, L. M., R. I. Dick & L. M. Lion, 1991. An assessment of the root zone method of wastewater treatment. Res. J. Water Pollut. 63: 239–247.

    Google Scholar 

  • Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and Management of Lakes and Reservoirs (2nd Edn). Lewis Publ: 548 pp.

  • Cooper, P. F. & B. C. Findlater (eds), 1990. Constructed Wetlands inWater Pollution Control. Proceedings of the International Conference on the Use of Constructed Wetlands in Water Pollution Control. Pergamon. Oxford: 77–84.

  • Grimm, M. P., 1994. The influence of aquatic vegetation and population biomass on recruitmant of 0+ and 1+ northern pike (Esox Lucius L.). In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fisheries News Books, Blackwell, Oxford: 280 pp.

    Google Scholar 

  • Gumbricht, T., 1992. Tertiary wastewater treatment using root-zone method in temperature climate. Hydrobiologia 170: 245–266.

    Google Scholar 

  • Gumbricht, T., 1993. Nutrient removal capacity in submersed macrophyte pond systems in a temperate climate. Ecol. Eng. 1: 49–61.

    Google Scholar 

  • Hammer, D. A. (ed.), 1989. Constructed Wetlands for Wastewater Treatment: Municipal. Industrial and Agricultural. Lewis, Chelsea, MI: 831 pp.

    Google Scholar 

  • Hammer, D. A. (ed.), 1992. Designing Constructed Wetlands to Treat Agricultural Nonpoint Source Pollution. Ecol. Eng. 1: 49–82.

  • Horne A. J. & C. R. Goldman, 1994. Limnology (2nd edn). McGraw-Hill, Inc: 576 pp.

  • Jørgensen, S. E., 1995. Exergy ald Ecological Buffer Capacities as Measures of Ecosystem Health. Ecosystem Health 1: 150–160.

    Google Scholar 

  • Li, W. & Q. Yan, 1995. Wetland utilization in Lake Taihu for fish farming and improvement of lake water quality. Ecol. Eng. 5: 107–121.

    Google Scholar 

  • Ma, S., 1985. Ecological engineering: application of ecosystem principles. Envir. Conserv. 12: 331–335.

    Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 1986. WETLANDS. Van Nostrand Reinhold Company, New York: 539 pp.

    Google Scholar 

  • Mitsch, W. J., 1992. Landscape design and the role of created, restored and natural riparian wetlands in controlling nonpoint source pollution. Ecol. Eng. 1: 27–47.

    Google Scholar 

  • Mitsch, W. J. & S. E. Jørgensen (eds), 1989. Ecological Engineering: An Introduction Ecotechnology. Wiley, New York: 185–217.

    Google Scholar 

  • Moss, B., J. H. Stansfield, K. Irvine, M. R. Perrow & G. L. Phillips, 1996. Progreesive restoration of a shallow lake – a 12-year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.

    Google Scholar 

  • Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. J. Wat. Pollut. Cont. Fed. 55: 495–505.

    Google Scholar 

  • Patten, B. C., 1990. Waterlines and shallow continental water bodies. Volume 1. Natural and human relationships. SPB Academic Publishing: 759 pp.

  • Rast, W. & M. Holland, 1988. Eutrophication of lakes and reservoirs: a framework for making management decisions. Ambio. 17: 2–12.

    Google Scholar 

  • Reed, S. C., E. J. Middlebrooks & R. W. Crites, 1988. Natural Systems for West Management & Treatment. McGran Hill. New York: 588 pp.

    Google Scholar 

  • Reed, S. C. (ed.), 1990. Natural Systems for Wastewater Treatment. Manual of Practice FD-16. Wat. Pollut. Cont. Fed., Alexandria, U.S.A: 260 pp.

  • Rich, P. H., & R. G. Wetzel, 1978. Detritus in the lake ecosystem. Am. Nat. 112: 57–71.

    Article  Google Scholar 

  • Ryding, S. O. & W. Rast, 1989. The control of eutrophication of lakes and reservoirs. Man and the biosphere series vol. 1. UNESCO. Paris: 265 pp.

    Google Scholar 

  • Scheffer M., M. Van der Berg, A. Breukelar, C. Breukers, H. Coops, R. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 49: 193–196.

    Google Scholar 

  • Tilton, D. L. & R. H. Kadlec, 1979. The utilization of a freshwater wetland for nutrient removal from secondary treated waste water effluents. J. envir. Qual. 8: 328–334.

    Google Scholar 

  • Tu, Q. Y., D. X. Gu, C. Q. Yi, Z. R. Xu & G. Z. Han, 1990. The Researches on the Lake Chao Eutrophication. The publisher of University of Science and Technology of China. Hefei: 225 pp. (in Chinese).

    Google Scholar 

  • Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food web manipulation in lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–34.

    Google Scholar 

  • Wang, S. Y., C. S. Jin, R. X. Meng & F. L. Xu, 1995. Environmental Research for the Lake Chao in Anhui Province. In Jin, X. C. (ed.), Lakes in China (Volume one). China Ocean Press: 580 pp.

  • Wolverton, B. C., 1987. Aquatic plalts for wastewater treatment: An overview. In Reddy, K. R. & W. H. Smith (eds), Aquatic Plants for Water Treatment and Resources Recovery. Magnolia Pub. Inc., Orlando, FL: 3–16.

    Google Scholar 

  • Xu, F. L., 1994. Scientific Decision-making System for Environmental Management of the Lake Chao Watershed. Environ. Protection. 21(5): 36–39.

    Google Scholar 

  • Xu, F. L., 1996. Ecosystem health assessment of Lake Chao, a shallow eutrophic Chinese lake. Lakes & Reservoirs: Research and Management, 2: 101–109.

    Google Scholar 

  • Xu, F. L., 1997. Exergy and structural exergy as ecological indicators for the development state of the Lake Chao ecosystem. Ecol. Model. 99: 41–49.

    Google Scholar 

  • Xu, F. L., S. E. Jøgensen & S. Tao, 1999a. Ecological indicators for assessing freshwater ecosystem health. Ecol. Model. 116: 77–106.

    Google Scholar 

  • Xu, F. L., S. E. Jøgensen, S. Tao & B. G. Li, 1999b. Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake. Ecol. Model. 117: 239–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Liu Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, FL., Tao, S. & Xu, ZR. The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese lake: possibilities and effects. Hydrobiologia 405, 169–178 (1999). https://doi.org/10.1023/A:1003867309767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003867309767

Navigation