Skip to main content
Log in

Thermal Postbuckling Analysis of Imperfect Reissner-Mindlin Plates on Softening Nonlinear Elastic Foundations

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A thermal postbuckling analysis is presented for a simply supported, moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on a softening nonlinear elastic foundation. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the first-order shear-deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations. The effects played by foundation stiffness, transverse shear deformation, plate aspect ratio, thermal load ratio and initial geometrical imperfections are studied. Typical results are presented in dimensionless graphical form and exhibit interesting imperfection sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. W. Chen, E. J. Brunelle and L. J. Chen, Thermal buckling of initial stressed thick plates. J. Mech. Des. 104 (1982) 557-564.

    Google Scholar 

  2. I. H. Yang and J. A. Shieh, Generic thermal buckling of initial stressed antisymmetric cross-ply thick laminates. Int. J. Solids Struct. 24 (1988) 1059-1070.

    Google Scholar 

  3. T. R. Tauchert, Thermal buckling of thick antisymmetric angle-ply laminates. J. Thermal Stresses10 (1987) 113-124.

    Google Scholar 

  4. L. X. Sun and T. R. Hsu, Thermal buckling of laminated composite plates with transverse shear deformation. Comp. and Struct. 36 (1990) 883-889.

    Google Scholar 

  5. W. J. Chen, P. D. Lin and L.W. Chen, Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution. Comp. and Struct. 41 (1991) 637-645.

    Google Scholar 

  6. A. K. Noor and J. M. Peters, Postbuckling of multilayered composite plates subjected to combined axial and thermal loads. Finite Elem. Anal. Des. 11 (1992) 91-104.

    Google Scholar 

  7. A. K. Noor and J. M. Peters, Finite element buckling and postbuckling solutions for multilayered composite panels. Finite Elem. Anal. Des. 15 (1994) 343-367.

    Google Scholar 

  8. A. K. Noor, J. H. Starnes and J. M. Peters, Thermomechanical buckling and postbuckling of multilayered composite panels. Compos. Struct. 23 (1993) 233-251.

    Google Scholar 

  9. L. Librescu and M. A. Souza, Post-buckling of geometrically imperfect sheardeformable flat panels under combined thermal and compressive edge loading. J. Appl. Mech. ASME 60 (1993) 526-533.

    Google Scholar 

  10. H. S. Shen and X. G. Zhu, Thermal postbuckling analysis of moderately thick plates. Appl. Math. Mech.16 (1995) 475-484.

    Google Scholar 

  11. K. K. Raju and G. V. Rao, Thermal postbuckling of a square plate resting on an elastic foundation by finite element method. Comp. and Struct. 28 (1988) 195-199.

    Google Scholar 

  12. P. C. Dumir, Thermal postbuckling of rectangular plates on Pasternak elastic foundations. Mech. Res. Comm. 15 (1988) 371-379.

    Google Scholar 

  13. E. Reissner, On postbuckling behavior and imperfection sensitivity of thin elastic plates on a nonlinear elastic foundation. Stud. Appl. Math. 49 (1970) 45-57.

    Google Scholar 

  14. H. S. Shen, Postbuckling analysis of orthotropic rectangular plates on nonlinear elastic foundations. Eng. Struct. 17 (1995) 407-412.

    Google Scholar 

  15. H. S. Shen and F.W. Williams, Postbuckling analysis of imperfect composite laminated plates on nonlinear elastic foundations. Int. J. Non-Lin. Mech. 30 (1995) 651-659.

    Google Scholar 

  16. L. Librescu and W. Lin, Postbuckling and vibration of shear deformable flat and curved panels on a nonlinear elastic foundation. Int. J. Non-Lin. Mech. 32 (1997) 211-225.

    Google Scholar 

  17. J. C. Amazigo, B. Budiansky and G. F. Carrier, Asymptotic analysis of the buckling of imperfect columns on nonlinear elastic foundation. Int. J. Solids Struct. 6 (1970) 1341-1356.

    Google Scholar 

  18. H. S. Shen, Postbuckling analysis of imperfect Reissner-Mindlin plates on softening nonlinear elastic foundations. Meccanica(in press).

  19. H. S. Shen, Buckling and postbuckling of moderately thick plates. Appl. Math. Mech.11 (1990) 367-376.

    Google Scholar 

  20. A. K. Noor and W. S. Burton, Three-dimensional solutions for thermal buckling of multilayered anisotropic plates. J. Engng. Mech. ASCE 118 (1992) 683-701.

    Google Scholar 

  21. H. S. Shen, Thermal postbuckling analysis of imperfect laminated plates using a higher-order shear deformation theory. Int. J. Non-Lin. Mech. 32 (1997) 1035-1050.

    Google Scholar 

  22. H. S. Shen, and Z. Q. Lin, Thermal postbuckling analysis of imperfect laminated plates. Comp. and Struct. 57 (1995) 533-540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, HS. Thermal Postbuckling Analysis of Imperfect Reissner-Mindlin Plates on Softening Nonlinear Elastic Foundations. Journal of Engineering Mathematics 33, 259–270 (1998). https://doi.org/10.1023/A:1004257527313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004257527313

Navigation