Skip to main content
Log in

Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The complex hierarchical structure of lamellar bone makes understanding structure–mechanical function relations, very difficult. We approach the problem by first using the relatively simple structure of parallel-fibred bone to construct a mathematical model for calculating Young's moduli in three-dimensions. Parallel-fibred bone is composed essentially of arrays of mineralized collagen fibrils, which are also the basic structural motif of the individual lamellae of lamellar bone. Parallel-fibred bone structure has orthotropic symmetry. As the sizes and shapes of crystals in bone are not well known, the model is also used to compare the cases of platelet-, ribbon- and sheet-reinforced composites. The far more complicated rotated plywood structure of lamellar bone results in the loss of the orthotropic symmetry of individual lamellae. The mathematical model used circumvents this problem by sub-dividing the lamellar unit into a thin lamella, thick lamella, transition zone between them, and the recently observed “back-flip” lamella. Each of these is regarded as having orthotropic symmetry. After the calculation of their Young's moduli they are rotated in space in accordance with the rotated plywood model, and then the segments are combined to present the overall modulus values in three-dimensions. The calculated trends compare well with the trends in microhardness values measured for circumferential lamellar bone. Microhardness values are, as yet, the only measurements available for direct comparison. Although the model is not directly applicable to osteonal bone, which is composed of many hollow cylinders of lamellar bone, the range of calculated modulus values and the trends observed for off-axis calculations, compare well with measured values. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Currey, “The Mechanical Adapatations of Bones” (Princeton University Press, Princeton, NJ, 1984).

    Google Scholar 

  2. S. Weiner and W. Traub, FASEB J. 6 (1992) 879.

    Google Scholar 

  3. J. D. Currey, J. Bomech 2 (1969) 1.

    Google Scholar 

  4. Idem, ibid. 2 (1969) 477.

    Google Scholar 

  5. S. Weiner, T. Arad and W. Traub, FEBS Lett. 285 (1991) 49.

    Google Scholar 

  6. N. Sasaki, T. Ikawa and A. Fukuda, J. Biomech. 24 (1991) 57.

    Google Scholar 

  7. H. D. Wagner and S. Weiner, ibid. 25 (1992) 1311.

    Google Scholar 

  8. J. D. Currey, K. Brear and P. Zioupos, ibid. 27 (1994) 885.

    Google Scholar 

  9. W. J. Landis, M. J. Song, A. Leith, L. McEwen and B. F. McEwen, J. Struct. Biol. 110 (1993) 39.

    Google Scholar 

  10. R. Stuhler, Forscht. Geb. Röntgenstrahlen 57 (1937) 231.

    Google Scholar 

  11. R. A. Robinson, J. Bone Surg. 34A (1952) 389.

    Google Scholar 

  12. E. Wachtel and S. Weiner, J. Bone. Miner. Res. 9 (1994) 1651.

    Google Scholar 

  13. S. Weiner and P. A. Price, Calcif. Tiss. Int. 39 (1976) 365.

    Google Scholar 

  14. H. Francillon-ViÉllot, V. De BufferenÍl, J. Castanet, J. Geraudie, F. J. Meunier, J. Y. Sire, L. Zylberberg and A. De RicqlÉs, in “Skeletal Biomineralization Patterns, Processes and Evolutionary Trends”, edited by J. G. Carter, Ch. 20, pp 471-530

  15. V. Ziv, H. D. Wagner and S. Weiner, Bone 18 (1996) 417.

    Google Scholar 

  16. W. Gebhardt, Arch. Entw. Mech. Org. 20 (1906) 187.

    Google Scholar 

  17. M. M. Giraud-Guille, Calcif. Tiss. Int. 42 (1988) 167.

    Google Scholar 

  18. S. A. Reid, Anat. Embryol. 174 (1986) 329.

    Google Scholar 

  19. J. W. Smith, J. Bone Joint Surg. 42B (1960) 588.

    Google Scholar 

  20. G. Marroti, Calicif. Tiss. Int. 53 (1993) 547.

    Google Scholar 

  21. S. Weiner, T. Arad, I. Sabanay and W. Traub, Bone, in press.

  22. V. Ziv, I. Sabanay, T. Arad, W. Traub and S. Weiner, Microsc. Res. Tech. 33 (1996) 203.

    Google Scholar 

  23. D. T. Reilly and A. H. Burstein, J. Biomec-. 8 (1975) 393.

    Google Scholar 

  24. W. Bonfield and M. D. Grynpas, Nature 270 (1977) 453.

    Google Scholar 

  25. R. M. V. Pidaparti, A. Chandran, Y. Takano and C. H. Turner, J. Biomech. 29 (1996) 909.

    Google Scholar 

  26. G. P. Evans, J. C. Behiri, J. D. Currey and W. Bonfield, J. Mater. Sci. Mater. Med. (1990) 38.

  27. S. Weiner, T. Arad and W. Traub, Chem. Biol. Mineral. Tiss. (1992) 93.

  28. S. Weiner and W. Traub, FEBS Lett. 206 (1986) 262.

    Google Scholar 

  29. P. Fratzl, M. Groschner, G. Vogel, H. Plenk, Jr, J. Eschberger, N. Fratzl-Zelman, K. Koller and K. Klaushofer, Bone Miner. Res. 7 (1992) 329.

    Google Scholar 

  30. A. Boyde, Cell Tiss. Res. 152 (1974) 543.

    Google Scholar 

  31. M. J. Glimcher, Phil. Trans. R. Soc. Lond. B304 (1984) 479.

    Google Scholar 

  32. S. Fitton-Jackson, Proc. R. Soc. Lond. Ser. B. 146 (1956) 270.

    Google Scholar 

  33. W. Traub, T. Arad and S. Weiner, Conn. Tiss. Res. 28 (1992) 99.

    Google Scholar 

  34. A. L. Arsenault, Calcif. Tiss. Res. 6 (1991) 239.

    Google Scholar 

  35. E. P. Katz, E. Wachtel, M. Yamauchi and G. L. Mechanic, Conn. Tiss. Res. 21 (1989) 149.

    Google Scholar 

  36. M. Yamauchi, E. P. Katz, O. Kazunori, K. Teraoka and G. L. Mechanic, ibid. 18 (1989) 41.

    Google Scholar 

  37. M. W. K. Chew and J. M. Squire, Int. J. Biol. Macromol. 8 (1986) 27.

    Google Scholar 

  38. H. J. HÖhling, B. A. Ashton and H. D. Koster, Cell. Tiss. Res. 148 (1974) 11.

    Google Scholar 

  39. S. Doty, R. A. Robinson and B. Schofield, in “Handbook of Physiology,” (edited by G. D. Aurbach, (American Physiology Society, Washington, DC, 1976) pp. 3-23.

    Google Scholar 

  40. R. S. Gilmore and J. L. Katz, J. Mater. Sci. 17 (1982) 1131.

    Google Scholar 

  41. A. Tanioka, T. Tazawa, K. Miyasaka and K. Ishikawa, Biopolymers 13 (1974) 735.

    Google Scholar 

  42. S. G. Lekhnitskii, “Theory of Elasticity of an Anisotropic Elastic Body” (Holden-Day, San Francisco, 1963) pp. 1-73.

    Google Scholar 

  43. U. Akiva, E. Itzhak and H. D. Wagner, Compos. Sci. Tech., in press.

  44. J. C. Halpin, “Primer on Composite Materials: Analysis”, Revised Edition (Technomic Publishing, Lancaster, PA, 1984) pp. 125-137.

    Google Scholar 

  45. G. E. Padawer and N. Beecher, Polym. Engng Sci. 10 (1970) 185.

    Google Scholar 

  46. J. Lusis, R. T. Woodhams and M. Xhantos, ibid. 13 (1973) 139.

    Google Scholar 

  47. L. E. Nielsen, J. Appl. Phys. 41 (1970) 4626.

    Google Scholar 

  48. L. E. Nielsen, “Mechanical Properties of Polymers and Composites”, Vol. 2 (Marcel-Dekker, 1974) Ch. 8.

  49. H. L. Cox, J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  50. H. Goldstein, “Classical Mechanics” (Addison-Wesley, 1980) pp. 143-8 and Appendix B.

  51. B. D. Agarwal and L. J. Broutman, “Analysis and Performance of Fiber Composites” (Wiley, New York, 1980).

    Google Scholar 

  52. B. Gershon, D. Cohn and G. Marom, Biomaterials 11 (1990) 548.

    Google Scholar 

  53. J. D. Currey and K. Brear, J. Mater. Sci. Mater. Med. 1 (1990) 14.

    Google Scholar 

  54. G. P. Evans, J. C. Behiri and W. Bonfield, Adv. Biomater. 8 (1988) 311.

    Google Scholar 

  55. R. Hodgskinson, J. D. Currey and G. P. Evans, J. Orthop. Res. 7 (1989) 754.

    Google Scholar 

  56. K. Hasegawa, C. H. Turner and D. B. Burr, Calcif. Tiss. Int. 55 (1994) 381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiva, U., Wagner, H.D. & Weiner, S. Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. Journal of Materials Science 33, 1497–1509 (1998). https://doi.org/10.1023/A:1004303926771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004303926771

Keywords

Navigation