Skip to main content
Log in

Metal nanoclusters in glasses as non-linear photonic materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Although electronics technologies have made great advances in device speed, optical devices can function in the time domain inaccessible to electronics. In the time domain less than 1 ps, optical devices have no competition. Photonic or optical devices are designed to switch and process light signals without converting them to electronic form. The major advantages that these devices offer are speed and preservation of bandwidth. The switching is accomplished through changes in refractive index of the material that are proportional to the light intensity. The third-order optical susceptibility, χ(3), known as the optical Kerr susceptibility which is related to the non-linear portion of the total refractive index, is the non-linearity which provides this particular feature. Future opportunities in photonic switching and information processing will depend critically on the development of improved photonic materials with enhanced Kerr susceptibilities, as these materials are still in a relatively early stage of development. Optically isotropic materials, e.g. glasses that have inversion symmetry, inherently possess some third-order optical non-linearities. Although this is quite small for silica-glasses at λ=1.06 μm, the absorption coefficient is extremely low, thereby allowing all-optical switching between two waveguides, embedded in a silica fibre, simply by controlling the optical pulse intensity. Different glass systems are now under investigation to increase their non-linearity by introducing a variety of modifiers into the glass-network. The incorporation of semiconductor microcrystallites enhances the third-order optical response. Metal colloids or nanoclusters, embedded in glasses, have also been found to introduce desired third-order optical non-linearities in the composite at wavelengths very close to that of the characteristic surface-plasmon resonance of the metal clusters. Ion implantation is nowadays an attractive method for inducing colloid formation at a high local concentration unattainable by the melt-glass fabrication process and for confining the non-linearities to specific patterned regions in a variety of host matrices. Recent works on metal-ion implanted colloid generation in bulk silica glasses have shown that these nanocluster–glass composites under favourable circumstances have significant enhancement of χ(3) with picosecond temporal responses. The remarkable achievements in developing such novel photonic materials seem to open the way for advances in all-optical switching devices, e.g. in inducing metal-colloids into coupled waveguides acting as a directional coupler. The present paper addresses the phenomena of optical non-linearities in metal nanocluster–glass composites that are synthesized by ion implantation, and the potential uses of these novel composite materials in photonics. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Smith, Bell Svs. Tech. J. 61 (1982) 1975.

    Google Scholar 

  2. S. R. Friberg and P. W. Smith, IEEE J. Quantum Electron. QE-23 (1987) 2089.

    Google Scholar 

  3. E. M. Vogel, J. Am. Ceram. Soc. 72 (1989) 719.

    Google Scholar 

  4. N. Bloembergen, “Nonlinear Optics” (W. A. Benjamin, NY, 1965).

    Google Scholar 

  5. A. Al-Saidi and R. G. Harrison, Appl. Phys. B 36 (1985) 17.

    Google Scholar 

  6. P. D. Mason, D. J. Jackson and E. K. Gorton, Opt. Commun. 110 (1994) 163.

    Google Scholar 

  7. D. R. Suhre, Appl. Phys. B 52 (1991) 367.

    Google Scholar 

  8. M. Hagemann and H. J. Weber, Appl. Phys. A 63 (1996) 67.

    Google Scholar 

  9. M. Bass, P. A. Franken, A. E. Hill, C. W. Peters and G. Weinreich, Phys. Rev. Lett. 8 (1962) 18.

    Google Scholar 

  10. I. D. Abella, ibid. 9 (1962) 453.

    Google Scholar 

  11. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi and M. J. Andrejco, Opt. Lett. 14 (1989) 1140.

    Google Scholar 

  12. M. J. Weber, D. Milan and W. L. Smith, Opt. Eng. 17 (1978) 463.

    Google Scholar 

  13. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegman, IEEE J. Quantum Electron. QE-20 (1984) 265.

    Google Scholar 

  14. N. L. Boling, A. G. Glass and A. Owyoung, ibid. QE-14 (1978) 601.

    Google Scholar 

  15. R. Adair, L. L. Chase, and S. A. Payne, J. Opt. Soc. Am. B: Opt Phys. 4 (1987) 875.

    Google Scholar 

  16. E. M. Vogel, M. J. Weber and D. M. Krol, Phys. Chem. Glasses 32 (1991) 231.

    Google Scholar 

  17. G. I. Stegeman, R. H. Stolen, J. Opt. Soc. Am. B 6 (1989) 652.

    Google Scholar 

  18. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Anderejco, M. A. Saifi and P. W. Smith, Appl. Phys. Lett. 51 (1987) 15.

    Google Scholar 

  19. D. S. Chemla and D. A. B. Miller, J. Opt. Soc. Am. B 2 (1985) 1155.

    Google Scholar 

  20. A. Kawabata and R. Kubo, J. Phys. Soc. Jpn 21 (1966) 1765.

    Google Scholar 

  21. R. F. Haglund Jr, L. Yang, R. H. Magruder III C. W. White, R. A. Zuhr, Lina Yang, R. Dorsinville and R. R. Alfano, Nucl. Instrum. Meth. B 91 (1994) 493.

    Google Scholar 

  22. R. Landauer, in “Electrical Transport and Optical Properties of Inhomogeneous Media,” edited by J. C. Garland and D. B. Tanner (American Institute of Physics, New York, 1978) p. 2.

    Google Scholar 

  23. Y. Q. Li, C. C. Sung, R. Iguva, C. M. Bowden, J. Opt. Soc. Am. B 6 (1989) 814.

    Google Scholar 

  24. Y. Wang and W. Mahler, Opt. Commun. 61 (1987) 233.

    Google Scholar 

  25. A. I. Ekmov, A. L. Alfros and A. A. Onushchenko, Sol. State. Commun. 56 (1985) 921.

    Google Scholar 

  26. C. Liu and A. Bard, J. Chem. Phys. 93 (1989) 3232.

    Google Scholar 

  27. D. K. Hle, J. Mater. Sci. 11 (1976) 2105.

    Google Scholar 

  28. D. Ricard, P. Roussognal and C. Flytzanis, Opt. Lett. 10 (1985) 511.

    Google Scholar 

  29. J. A. Armstrong, N. Bloembergen, J. Ducuing and P. Pershan, Phys. Rev. 127 (1962) 1918.

    Google Scholar 

  30. J. W. Haus, N. Kalyaniwalla, R. Inguva and C. M. Bowden, J. Opt. Soc. Am. B 6 (1989) 797.

    Google Scholar 

  31. R. H. Doremus, J. Chem. Phys. 40 (1964) 2389.

    Google Scholar 

  32. Idem, ibid. 42 (1965) 414.

    Google Scholar 

  33. W. Otter, Z. Physik 161 (1961) 163.

    Google Scholar 

  34. H. Ehrenreich and H. R. Philipp, Phys. Rev. 128 (1962) 1622.

    Google Scholar 

  35. L. G. Schulze, J. Opt. Soc. Am. 44 (1954) 357.

    Google Scholar 

  36. R. Yokota and K. Shimizu, J. Phys. Soc. Jpn 12 (1957) 833.

    Google Scholar 

  37. G. Mie, Ann. Phys. 25 (1908) 377.

    Google Scholar 

  38. W. J. Doyle, Phys. Rev. 111 (1958) 1067.

    Google Scholar 

  39. R. H. Magruder III, L. Yang, R. F. Haglund Jr, C. W. White, Lina Yang, R. Dorsinville and R. R. Alfano, Appl. Phys. Lett. 62 (1993) 1730.

    Google Scholar 

  40. F. Hache, D. Ricard and C. Flytzanis, J. Opt. Soc. Am. B 3 (1986) 1647.

    Google Scholar 

  41. N. E. Christensen, B. O. Seraphin, Phys. Rev. B 4 (1971) 3321.

    Google Scholar 

  42. F. Hache, D. Ricard, C. Flytzanis and U. Kreibig, Appl. Phys. A 47 (1988) 347.

    Google Scholar 

  43. G. Battaglin, R. Polloni, G. De Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, F. Spizzo, G. De and R. F. Haglund Jr, in “Proceedings of the International Conference on Fibre Optics and Photonics, Photonics-96”, edited by J. P. Raina and P. R. Vaya (Tata McGraw-Hill Publishing Co., New Delhi) India, p. 36.

  44. M. Mennig, M. Schmitt and H. Schmidt, J. Sol-Gel Sci. Tech. 8 (1997) 1035.

    Google Scholar 

  45. L. C. Nistor, J. van Landuyt, J. D. Barton, D. E. Hole, N. D. Skelland and P. D. Townsend, J. Non-Cryst. Solids 162 (1993) 217.

    Google Scholar 

  46. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan and E. W. van Stryland, IEEE J. Quantum Electron. QE-26 (1990) 760.

    Google Scholar 

  47. R. F. Haglund Jr, L. Yang, R. H. Magruder III, J. E. Witting, K. Becker and R. A. Zuhr, Opt. Lett. 18 (1993) 373.

    Google Scholar 

  48. P. Mazzoldi, F. Caccavale, E. Cattaruzza, P. Chakraborty, L. Tramontin, A. Boscoloboscoletto, R. Bertoncello, E. Trivillin, G. Battaglin and G. W. Arnold, Nucl. Instrum. Meth. B 91 (1994) 505.

    Google Scholar 

  49. P. Mazzoldi, T. Tramontin, A. Boscolo-Boscoletto, G. Battaglin and G. W. Arnold, ibid. 80/81 (1993) 1192.

    Google Scholar 

  50. R. H. Magruder III, Do Henderson, S. H. Morgan and A. Zuhr, J. Non-Cryst. Solids 152 (1993) 258.

    Google Scholar 

  51. H. Hosono, Y. Y. Suzuku, Y. Abe, Y. L. Lee, K. Oyoshi and S. Tanakar, ibid. 142 (1992) 287.

    Google Scholar 

  52. Y. Takeda, T. Hoiki, T. Motohiro and S. Noda, Nucl. Instrum. Meth. B 91 (1987) 501.

    Google Scholar 

  53. R. H. Magruder III, J. E. Witting and R. A. Zuhr, J. Non-Cryst. Solids 163 (1993) 162.

    Google Scholar 

  54. P. D. Townsend, Rep. Prog. Phys. 50 (1987) 501.

    Google Scholar 

  55. R. C. Caro and R. C. Gower, IEEE J. Quantum Electron. QE-18 (1982) 1375.

    Google Scholar 

  56. W. Nie, Adv. Mater. 5 (1993) 520.

    Google Scholar 

  57. M. Fleuster, CH. Buchal, D. Fluck and P. Gunter, Nucl. Instrum. Meth. B 80/81 (1993) 1150.

    Google Scholar 

  58. J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty and I. Mansour, J. Appl. Phys. 78 (1995) 2193.

    Google Scholar 

  59. F. Caccavale, F. Segato, I. Mansour and P. Chakraborty, in: “Proceedings of the International Conference on Fiber Optics and Photonics”, edited by J. P. Raina and P. R. Vaya (Tata McGraw-Hill Publishing Co., New Delhi) India (1996) p. 261.

    Google Scholar 

  60. E. Desurvire, Phys. Today January (1994) p. 20.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, P. Metal nanoclusters in glasses as non-linear photonic materials. Journal of Materials Science 33, 2235–2249 (1998). https://doi.org/10.1023/A:1004306501659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004306501659

Keywords

Navigation