Skip to main content
Log in

Microstructure of X52 and X65 pipeline steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure of two commercial pipeline steels X52 and X65 was examined to provide a foundation for the understanding of the IGSCC mechanism of pipeline steels. Observation of the microstructure was carried out using scanning electron microscopy (SEM) and an analytical electron microscope. The microstructure of X52 and X65 pipeline steels shows banding of pearlite rich and ferrite rich areas. The ferrite grains were about 10 μm in size with curved grain boundaries. There was carbide at the ferrite grain boundaries for X52 steel, and there was circumstantial evidence to suggest carbon segregation at the boundaries. The pearlite colonies were consistent with nucleation by a number of different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. "Final staff report on investigation of Tennessee Gas Transmission Company Pipeline No. 100–1 failure near Natchitoches, Louisiana, March 1965" (Federal Power Commission, Bureau of Natural Gas, Washington D.C., 1965).

  2. P. J. Kentish, Br. Corros. J., 20 (1985) 139.

    CAS  Google Scholar 

  3. R. N. Parkins, 5th Symposium on line pipe research, American Gas Association Inc, 1974, paper V, U1–40.

  4. R. N. Parkins, E. Belhimer and W. K. Blanchard Jr, Corrosion, 49 (1993) 951.

    Article  CAS  Google Scholar 

  5. J. A. Beavers, T. K. Christman and R. N. Parkins, "Materials Performance," 1998, p. 22.

  6. Z. F. Wang and A. Atrens, Metall. and Mater. Trans. 27A (1996) 2686.

    Google Scholar 

  7. M. Henthorne and R. N. Parkins, Br. Corros. J.7 (1967) 186.

    Google Scholar 

  8. P. M. Robinson and P. N. RichardsJ. Iron Steel Inst. (1965) 621.

  9. B. Mintz and P. Campbell, Mater. Sci. Tech.5 (1989) 155.

    CAS  Google Scholar 

  10. B. Mintz, S. Tajik and R. Vipond, ibid.10 (1994) 89.

    CAS  Google Scholar 

  11. J. Q. Wang, A. Atrens, D. R. Cousens, P. M. Kelly, C. Nockolds and A. Atrens, Acta Materialia. 46 (1998) 5677.

    Article  CAS  Google Scholar 

  12. J. Q. Wang, D. R. Cousens, C. Nockolds and A. Atrens, Corrosion & Prevention 97, 1997.

  13. J. Q. Wang, A. Atrens, D. R. Cousens, C. Nockolds and S. Bulcock, J. Mater. Sci.33 (1998) 1.

    CAS  Google Scholar 

  14. A. Atrens and Z. F. Wang, ibid.33 (1998) 405.

    Article  CAS  Google Scholar 

  15. A. Atrens and A. Oehlert, ibid.33 (1998) 783.

    Article  CAS  Google Scholar 

  16. A. Oehlert and A. Atrens, ibid.33 (1998) 775.

    Article  CAS  Google Scholar 

  17. Idem, ibid.32 (1997) 6519.

  18. A. Atrens, Z. F. Wang and J. Q. Wang, Advances in Fracture Research, in Proceedings of the Ninth International Conference on Fracture, edited by B. L. Karihaloo et al. (Pergamon, 1997) p. 375.

  19. A. Oehlert and A. Atrens, Corrosion Sci.38 (1996) 1159.

    Article  CAS  Google Scholar 

  20. Idem. Act Metallurgica et Materialia42 (1994) 1493.

  21. A. Atrens and Z. F. Wang, Materials Forum19 (1995) 9.

    CAS  Google Scholar 

  22. A. Atrens, C. C. Brosnan, S. Ramamurthy, A. Oehlert and I. O. Smith, Measurement Science and Technology4 (1993) 1281.

    Article  CAS  Google Scholar 

  23. S. Ramamurthy and A. Atrens, Corrosion Science34 (1993) 1385.

    Article  CAS  Google Scholar 

  24. A. Atrens, R. Coade, J. Allison, H. Kohl, G. Hochortler and G. Krist, Materials Forum17 (1993) 263.

    CAS  Google Scholar 

  25. A. S. Lim and A. Atrens, Applied Physics A. 54 (1992) 270.

    Article  Google Scholar 

  26. S. Jin and A. Atrens, ibid. 50 (1990) 287.

    Article  Google Scholar 

  27. Idem. ibid. 42 (1987) 149.

  28. R. M. Rieck, A. Atrens and I. O. Smith, Met. Trans. 20A (1989) 889.

    Google Scholar 

  29. A. Atrens, W. Hoffelner, T. W. Duerig and J. Allison, Scripta, Met. 17 (1983) 601.

    Article  Google Scholar 

  30. A. Atrens, Corrosion39 (1983) 483.

    CAS  Google Scholar 

  31. J. Skogsmo and A. Atrens, Acta Metallurgica et Materialia42 (1994) 1139.

    Article  CAS  Google Scholar 

  32. A. Atrens, G. Dannhaeuser and G. Baero, J. Nuclear Mater.126 (1984) 91.

    Article  CAS  Google Scholar 

  33. A. Atrens, J. J. Bellina, N. F. Fiore and R. J. Coyle, "The Metals Science of Stainless Steels," edited by W. E. Collings and H. W. King (TMS-AIME, 1978) 54.

  34. J. G. Williams, C. R. Killmore, F. J. Barbaro, J. Piper and Fletcher, Mater. Forum, 1996, 20, 13.

    CAS  Google Scholar 

  35. J. P. Benedict, R. Anderson, S. J. Klepeis and M. Chaker, Mat. Res. Soc. Symp. Proc., 199 (1990) 189.

    Google Scholar 

  36. M. X. Zhang, "Crystallography of phase transformations in steels," PhD thesis, in University of Queensland, (1997) 135.

  37. M. Militzer, R. Pandi and E. B. Hawbolt, Metall. Trans., A, 27A (1996) 1547.

    Google Scholar 

  38. R. F. Mehl and W. C. Hagel, Progr. Metal. Phys.6 (1956) 74.

    Article  CAS  Google Scholar 

  39. A. K. Sinha, "Ferrous Physical Metallurgy" (Butterworths, 1989).

  40. R. W. K. Honeycombe and H. K. D. H. Bhadeshia, "Steels" (Edward Arnold, 1981).

  41. M. X. Zhang and P. M. Kelly, submitted to Met. Trans.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.Q., Atrens, A., Cousens, D.R. et al. Microstructure of X52 and X65 pipeline steels. Journal of Materials Science 34, 1721–1728 (1999). https://doi.org/10.1023/A:1004538604409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004538604409

Keywords

Navigation