Skip to main content
Log in

Evolution of the microstructure of disperse Zinc-oxide during tribophysical activation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The process of macro- and microstructural transformations of zinc-oxide powders, which were tribophysically activated by grinding in a vibro-mill was investigated using methods of transmission electron microscopy, infrared spectroscopy and X-ray. It is shown that tribophysical activation contributes to a gradual modification of the fine defect structure of zinc-oxide powders. In the starting stage agglomerates and bigger, longer particles are destroyed first of all. As a result of the formation of both volume and surface defects and changes of the character of interparticles interactions the plate-like polycrystal particles are created. They actually present sets of coherent scattering region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye. G. Awakumov, “Mechanical Methods of the Activation of Chemical Processes” (Nauka, Novosibirsk, 1986, in Russian) p. 305.

    Google Scholar 

  2. G. Heinike, “Tribochemistry” (Mir, Moskva, 1987, in Russian), p. 582.

    Google Scholar 

  3. T. Sreckovic, N. G. Kakazey and T. B. Novakovic, Sci. Sintering 27 (1995) 183.

    Google Scholar 

  4. N. G. Kakazey, T. V. Sreckovic and M. M. Ristic, J. Mater. Sci. 32 (1997) 4619.

    Google Scholar 

  5. C. J. Serna and J.E. Iglesias, J. Phys. C 20 (1987) 472.

    Google Scholar 

  6. M. Andres-Verges and C. J. Serna, J. Mater. Sci. Lett. 20 (1988) 970.

    Google Scholar 

  7. M. Andres-Verges, A. Mifsud and C. J. Serna, ibid. 8 (1989) 115.

    Google Scholar 

  8. M. Andres-Verges and M. Martinez-Gallego, J. Mater. Sci. 27 (1992) 1756.

    Google Scholar 

  9. S. Hayashi, N. Nakamori and H. Kanamori, J. Phys. Soc. Japan 46 (1979) 176.

    Google Scholar 

  10. P. Cipe and R. Ervard, Phys. Rev. B 14 (1971) 1715.

    Google Scholar 

  11. L. Genzel and T. P. Martin, Phys. Stat. Sol. 51b (1972) 91.

    Google Scholar 

  12. Idem. Surface Sci. 34 (1973) 33.

    Google Scholar 

  13. E. C. Heltemes and H. L. Swinney, J. Appl. Phys. 38 (1967) 2387.

    Google Scholar 

  14. C. A. Arguello, D. L. Rousseau and S. R. S. Porto, Phys. Rev. 181 (1969) 1351.

    Google Scholar 

  15. S. S. Gorelik and L. N. Rastorguev, “X-ray and Electron Diffraction Analysis of Metals” (Gostekhizdat, Moscow, 1963, in Russian).

    Google Scholar 

  16. F. Heiland, G. Mollaro and E. Stockmann, in "Solid State Physics,”"Vol. 8, edited by F. Seitz and N. Y. Turnbull (Academic Press, London, 1959) p. 191.

    Google Scholar 

  17. G. Williamson and R. Smallman, Phil. Mag. 1 (1956) 54.

    Google Scholar 

  18. N. G. Kakazey, D.Sc. Dissertation Abstract, Riga, 1991 (in Russian).

  19. A. D. Zimon and E. L. Andrianov, “Autohesia Loose Materials” (Metallurgiya, Moscow, 1978, in Russian) p. 288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakazey, M.G., Melnikova, V.A., Sreckovic, T. et al. Evolution of the microstructure of disperse Zinc-oxide during tribophysical activation. Journal of Materials Science 34, 1691–1697 (1999). https://doi.org/10.1023/A:1004553305665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004553305665

Keywords

Navigation