Skip to main content
Log in

Freeform fabrication of functional aluminium prototypes using powder metallurgy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Freeform fabrication methods allow the direct formation of parts built layer by layer, under the control of a CAD drawing. Most of these methods form parts in thermoplastic or thermoset polymers, but there would be many applications for freeform fabrication of fully functional metal or ceramic parts. We describe here the freeforming of sinterable aluminium alloys. In addition, the building approach allows different materials to be positioned within a monolithic part for an optimal combination of properties. This is illustrated here with the formation of an aluminium gear with a metal-matrix composite wear surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Calvert and R. Crockett, Chemistry of Materials 9 (1997) 650.

    Article  Google Scholar 

  2. K. Stuffle et al., in Proceedings of the Solid Freeform Fabrication Symposium, edited by H. L. Marcus et al. (Austin, Texas, 1993) p. 60.

  3. R. S. Crockett et al., in Proceedings of the Solid Freeform Fabrication Symposium, edited by H. L. Marcus et al. (Austin, Texas, 1995) p. 17.

  4. P. Calvert et al., Chemistry of Materials 8 (1996) 1298.

    Google Scholar 

  5. J. Lombardi et al., Polymer Preprints 37 (1996) 221.

    Google Scholar 

  6. M. Greul et al., Computers in Industry 28 (1995) 23.

    Google Scholar 

  7. M. Greul, Materials Technology 11 (1996) 131.

    Google Scholar 

  8. M. Greul et al., Metal Powder Report 52 (1997) 24.

    Google Scholar 

  9. L. S. Darken and R. W. Gurry, in “Physical Chemistry of Metals” (McGraw Hill, New York, 1953).

    Google Scholar 

  10. C. Lall, Int. J. Powder Metall. 27 (1991) 315.

    Google Scholar 

  11. R. N. Lumley et al., Metallurgical Transactions A 30A (1999) 457.

    Google Scholar 

  12. T. B. Sercombe and G. B. Schaffer, in Advances in Powder Metallurgy and Particulate Materials: Proceedings of the 1997 Conference on Powder Metallurgy and Particulate Material, 1997.

  13. H. Meher, in “Landolt Bornstein Numerical Data and Functional Relationships in Science and Technology,” Vol. III/26 (Springer-Verlag, Berlin, 1991), p. 151.

    Google Scholar 

  14. Y. Nakao et al., US Patent no. 5.525.292 (1996).

  15. I. Kovacs et al., Materials Science and Engineering 21 (1975) 169.

    Google Scholar 

  16. H. Danninger, Metal Powder Report (UK) 48 (1993) 46.

    Google Scholar 

  17. A. K. Jha et al., Powder Metallurgy 32 (1989) 209.

    Google Scholar 

  18. G. H. Borhani et al., ibid. 36 (1993) 67.

    Google Scholar 

  19. R. Q. Guo et al., J. of Mater. Sci. 32 (1997) 3971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sercombe, T.B., Schaffer, G.B. & Calvert, P. Freeform fabrication of functional aluminium prototypes using powder metallurgy. Journal of Materials Science 34, 4245–4251 (1999). https://doi.org/10.1023/A:1004602819393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004602819393

Keywords

Navigation