Skip to main content
Log in

Review Positron annihilation in fine-grained materials and fine powders—an application to the sintering of metal powders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We consider the specific problem of the influence of an inhomogeneous distribution of defects in solids on positron annihilation characteristics. In detail, we investigate the effect of micro-structure, i.e. dislocations, vacancies, vacancy clusters, grain and subgrain boundaries, pores or inner surfaces, on positron lifetime spectroscopy. Only few materials show such small grain sizes that positron annihilation is affected. One example are powder compacts, made out of small and fine-grained powder, during different stages of the sintering process. All samples generically show positron trapping at grain boundaries (τGB ≈ 300 ps) and at surfaces (τsurf = 500–600 ps). τGB = 300 ps corresponds to small voids consisting of roughly eight vacancies. Different defects can lead to similar annihilation parameters. Hence, we compare the lifetime data obtained from porous and fine-grained samples to the kinetics of defect annealing after irradiation and plastic deformation, e.g. the thermal stability of dislocations or vacancy clusters. We conclude that τGB ≈ 300 ps is apparently not related to vacancy clusters in the matrix, but is due to positron trapping at large-angle grain boundaries. This large open volume is in contrast to common grain boundary models. The change of porosity and grain size with temperature, i.e. during sintering, has been determined in a correlated study by metallography and X-ray line-profile analysis. The effective powder particle size ranges from ≈0.5 to ≈15 μm, while the grain sizes are always smaller. The only detectable lattice defects in all samples above recrystallization temperature are grain boundaries, besides a surface component in very fine powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. M. Staab, R. Krause-Rehberg, B. Vetter and B. Kieback, J. Phys.: Condens. Matter 11(7) (1999) 1757.

    Google Scholar 

  2. T. E. M. Staab, R. Krause-Rehberg, B. Vetter, B. Kieback, G. Lange and P. Klimanek, ibid.11(7) (1999) 1787.

    Google Scholar 

  3. T. E. M. Staab, R. Krause-Rehberg, B. Vetter and B. Kieback, ibid.11(7) (1999) 1807.

    Google Scholar 

  4. A. Seeger, Appl. Phys. 4(1974) 183–199.

    Google Scholar 

  5. B. Bergensen and M. J. Stott, Solid State Commun. 7 (1969) 1203–1205.

    Google Scholar 

  6. D. C. Connors and R. N. West, Phys. Lett. 30A(1) (1969) 24–25.

    Google Scholar 

  7. A. Dupasquier, R. Romero and A. Somoza, Phys. Rev. B48(13) (1993) 9235–9245.

    Google Scholar 

  8. Ch. Hübner, T. Staab and R. Krause-Rehberg, Appl. Phys. A61(1995) 203–206.

    Google Scholar 

  9. M. J. Puska and R. M. Nieminen, J. Phys. F: Metal Phys. 13(1983) 333–346.

    Google Scholar 

  10. Ch. V. Kopetskii, G. I. Kulesko, L. S. Kokhanchuk and O. V. Zharikov, Phys. Stat. Sol. (a) 22(1974) 185–194.

    Google Scholar 

  11. M. L. Johnson, S. Saterlie, D. Boice and J. G. Byrne, ibid.48(1978) 551–554.

    Google Scholar 

  12. T. LeipistÖ, J. Yli-kauppila, P. Kettunen and P. Hautojävrvi ibid.67(1981) K93–K97.

    Google Scholar 

  13. J. G. Byrne, Met. Trans. A. 10A(1979) 791–807.

    Google Scholar 

  14. S. Mantl and W. Triftshäuser, Phys. Rev. B17(4) (1978) 1645–1652.

    Google Scholar 

  15. K. Hinode, S. Tanigawa and M. Doyama, Rad. Effects 32(1977) 73–77.

    Google Scholar 

  16. T. E. M. Staab, K. Petters, C. G. Hübner and A. Polity,Multi-component positron lifetime analysis of the annealing behavior in electron irradiated and plastically deformed highpurity metals (1999) to be published.

  17. B. Somieski, T. E. M. Staab and R. Krauserehberg, Nucl. Instr. and Meth. A381(1996) 128–140.

    Google Scholar 

  18. Idem., Nucl.Instr. Meth. A381(1996) 141–151.

    Google Scholar 

  19. R. M. Nieminen, in edited by W. Brandt and A. Dupasquier, Proceedings of the International School of Physics “Enrico Fermi”—Positron Solid State Physics (North Holland, Amsterdam, 1983) pp. 359–407.

  20. R. Paulin, in edited by W. Brandt and A. Dupasquier, Proceedings of the International School of Physics “Enrico Fermi”— Positron Solid State Physics (North Holland, Amsterdam, 1983) pp. 565–580.

  21. B. Bergensen, E. Pajanne, P. Kubica, M. J. Stott and C. H. Hodges, Solid State Commun. 15(1974) 1377–1380.

    Google Scholar 

  22. T. Mcmullen, in edited by P. C. Jean, R. M. Singru and K. P. Gopinathan “Positron Annihilation” (World Scientific, Singapore, 1985) pp. 822–824.

    Google Scholar 

  23. W. Frank and A. Seeger, Appl. Phys. 3(1974) 61–66.

    Google Scholar 

  24. A. Shukla, M. Peter and L. Hoffmann, Nucl. Instr. Meth. A335(1993) 310–317.

    Google Scholar 

  25. Y. C. Jean, F. Zandiehnadem and Q. Deng, Mat. Sci. Forum 105–110(1992) 1897–1900.

    Google Scholar 

  26. G. Dlubek, O. Brümmer and P. Sickert, Kristall und Technik 12(3) (1977) 295–306.

    Google Scholar 

  27. K. Hinode, S. Tanigawa and M. Doyama, J. Phys. Soc. Japan 41(6) (1976) 2037–2042.

    Google Scholar 

  28. J. E. Kluin and Th. Hehenkamp, Phys. Rev. B44(11) (1991) 597–608.

    Google Scholar 

  29. R. M. Nieminen and J. Laakkonen, Appl. Phys. 20 (1979) 181–184.

    Google Scholar 

  30. K. G. Lynn, W. E. Frieze and P. J. Schultz, Phys. Rev. Lett. 52(13) (1984) 1137–1140.

    Google Scholar 

  31. R. Steindl, G. KÖgel, P. Sperr, P. Willutzki, D. T. Britton and W. Triftshäuser, Mater. Sci. Forum 105–110(1992) 1455–1458.

    Google Scholar 

  32. R. M. Nieminen, M. J. Puska and M. Manninen, Phys. Rev. Lett. 53(13) (1984) 1298.

    Google Scholar 

  33. M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66(3) (1994) 841–897.

    Google Scholar 

  34. J. Wolff, M. Franz and Th. Hehenkamp, Mater. Sci. Forum 175–178(1995) 569–572.

    Google Scholar 

  35. H. E. Schaefer, Phys. Stat. Sol. (a) 102(1987) 47–65.

    Google Scholar 

  36. E. Soininen, H. Huomo, P. A. Huttunen, J. Mäkinen, A. Vehannen and P. Hautojärvi, Phys. Rev. B41(10) (1990) 6227–6233.

    Google Scholar 

  37. P. J. Schultz and K. G. Lynn, Rev. Mod. Phys. 60(3) (1988) 701–79.

    Google Scholar 

  38. H. Gleiter, Mater. Sci. Eng. 52(1982) 91–131.

    Google Scholar 

  39. W. Brandt and R. Paulin, Phys. Rev. Lett. 21(4) (1968) 193–195.

    Google Scholar 

  40. A. Gainotti and C. Ghezzi, 24(8) (1970) 349–351.

  41. G. Gottstein, “Einführung in die allgemeine Metallkunde und in die Werkstoffwissenschaften,” Lecture Script RWTH (Aachen, Aachen, Germany, 1984).

    Google Scholar 

  42. C. G. Hübner, T. Staab and H. S. Leipner, Phys. Stat. Sol. (a) 150(1995) 653–660.

    Google Scholar 

  43. Th. Hehenkamp, Th. Kurschat and W. Lührtanck, J. Phys. F Metal Phys. 16(1986) 981–987.

    Google Scholar 

  44. K. O. Jensen, J. Phys.: Condens. Matter 1(1989) 10,595–10,602.

    Google Scholar 

  45. M. J. Puska, ibid. 3(1991) 3455–3469.

    Google Scholar 

  46. P. A. Sterne and J. H. Kaiser, Phys. Rev. B43(17) (1991) 13,982–13,998.

    Google Scholar 

  47. A. Saoucha, N. J. Pedersen and M. Eldrup, Matter. Sci. Forum 105–110(1971, 1992).

  48. G. Dlubek, O. Brümmer, N. Meyendorf, P. Hautojärvi, A. Vehanen and J. Yli-kauppila, J. Phys. F: Metal Phys. 9(10) (1979) 1961–1973.

    Google Scholar 

  49. G. Dlubek, R. Krause, O. Brümmer, Z. Michno and T. Gorecki, ibid.17(1987) 1333–1347.

    Google Scholar 

  50. M. J. Fluss, L. C. Smedskjaer, R. W. Siegel, D. G. Legnini and M. K. Chason, ibid.10(1980) 1763–1774.

    Google Scholar 

  51. N. Q. Lam, L. Dagens and N. V. Doan, ibid.13(1983) 2503–2516.

    Google Scholar 

  52. P. Ehrhart and U. Schlagheck, ibid.4(1974) 1575–1588.

    Google Scholar 

  53. Idem., ibid.4(1974) 1589–1598.

    Google Scholar 

  54. W. Wycisk and M. Feller-kniepmeier, Phys. Stat. Sol. (a) 37(1976) 183–191.

    Google Scholar 

  55. T. Troev, Ch. Angelova and I. Mincov, Phys. Lett. A138(1, 2) (1989) 65–68.

    Google Scholar 

  56. L. C. Smedskjaer, M. J. Fluss, D. G. Legnini, M. K. Chason and R. W. Siegel, J. Phys. F: Metal Phys. 11(1981) 2221–2230.

    Google Scholar 

  57. D. Hull and D. J. Bacon, “Introduction to Dislocations,” 3rd ed. (Pergamon Press, Oxford, New York, 1984).

    Google Scholar 

  58. F. R. N. Nabarro, “Theory of Crystal Dislocations” (Oxford University Press, Oxford, 1976).

    Google Scholar 

  59. R. Myllylä, M. Karras and T. Miettinen, Appl. Phys. 13(1977) 387–389.

    Google Scholar 

  60. B. Somieski, PhD thesis, Technische Fakultät der Universität des Saarlandes und Martin-Luther Universität Halle-Wittenberg, Fr.-Bach-Platz 6, 06108 Halle/Saale, Germany, 1996.

  61. A. Seeger, Theorie der Gitterfehlstellen, in edited by S. Flügge “Handbuch der Physik-Kristall-physik 1-Bd.4 Teil 1” (Springer, Berlin, 1955), pp. 383–667.

    Google Scholar 

  62. W. Schatt and M. Hinz, Powder Metall. internat. 20(6) (1988) 17–20.

    Google Scholar 

  63. R. Krause, W. Schatt, B. Vetter and A. Polity, Cryst. Res. Technol. 25(7) (1990) 819–825.

    Google Scholar 

  64. B. Vetter, PhD thesis, Fakultät für Maschinenwesen, Technische Universität Dresden, Helmholtzstr. 7, D-01069 Dresden, Germany, 1991.

  65. K. Brand, PhD thesis, Fakultät für Maschinenwesen, Technische Universität Dresden, Helmholtzstr. 7, D-01069 Dresden, Germany, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staab, T.E.M., Krause-Rehberg, R. & Kieback, B. Review Positron annihilation in fine-grained materials and fine powders—an application to the sintering of metal powders. Journal of Materials Science 34, 3833–3851 (1999). https://doi.org/10.1023/A:1004666003732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004666003732

Keywords

Navigation