Skip to main content
Log in

Thermal decomposition products of hydrotalcite-like compounds: low-temperature metaphases

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Synthetic hydrotalcite-like samples with composition [M1 − x 2+Alx 3+(OH)2](CO3)x/2 ·nH2O, where M = Mg, Ni, x = 0.25 and 0.33, n = 2x and 1.5x, are studied by XRD, DTA, TG and IR spectroscopy after heating in the temperature interval 120–260 °C and rehydration in air and water. Structural models of the two metaphases obtained are proposed. Metahydrotalcite-D (HT-D) is formed at 140–180 °C by the reversible dehydration of the interlayer. Metahydrotacite-B (HT-B) is formed at temperatures 240–260 °C as a result of the dehydroxilation of a part of OH groups of the brucite-like layer and inclusion of two oxygenes from the CO3-group in the same layer. The HT-B has a specific crystal structure. Rehydration does not restore the initial structural state but leads to the formation of a phase (HT-B-r) characterized with increased thickness of the interlayer, high content of water and a low temperature of dehydration. The properties of HT-B depend on the ratio M2+: Al of the initial sample. The substitution Mg ↔ Ni does not influence the properties of the metaphases in the low temperature region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frondel, Amer. Mineral. 26 (1941) 295.

    Google Scholar 

  2. Taylor, Mineral. Mag. 39 (1973) 377.

    Google Scholar 

  3. Mandarino, Mineral Records 25 (1994) 315.

    Google Scholar 

  4. Arakcheeva, D. Pushtarovskii, R. Rastsvetaeva, D. Atensio and G. Lubman, Krystallographia 41 (1996) 1024 (Russian).

    Google Scholar 

  5. Miyata, Clays and Clay Minerals 23 (1975) 369.

    Google Scholar 

  6. Idem.,ibid. 28 (1980) 50.

  7. Reichle, S. Y. Kang and D. S. Everhard, J. Catal. 101 (1985) 352.

    Google Scholar 

  8. Reichle, Solid State Ionics 22 (1986) 135.

    Google Scholar 

  9. I. Pauch, H.-H. Lohse, K. Schurmann and R. Allmann, Clays and Clay Minerals 34 (1986) 507.

    Google Scholar 

  10. P. Porta and S. Morpurgo, Appl. Clay Sci. 10 (1995) 31.

    Google Scholar 

  11. R. Allmann and H. P. Jespen, N. Jhb. Miner. Mh. 12 (1969) 544.

    Google Scholar 

  12. R. Allmann, Acta Crystallogr. 24 (1968) 972.

    Google Scholar 

  13. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today 11 (1991) 173.

    Article  Google Scholar 

  14. G. J. Ross and H. Kodama, Amer. Mineral. 52 (1967) 1036.

    Google Scholar 

  15. L. Pesic, S. Salipurovic, V. Marcovic, D. Vucelic, W. Kagunya and W. Jones, J. Mater. Chem. 2 (1992) 1069.

    Google Scholar 

  16. K. Mackenzie, R. Meinhold, B. Sherriff and Z. Xu, ibid. 3 (1993) 1263.

    Google Scholar 

  17. M. Hudson, S. Carlino and C. Apperley, ibid. 5 (1995) 323.

    Google Scholar 

  18. F. Rey and V. Fornes, JCS Faraday 88 (1992) 2233.

    Google Scholar 

  19. T. Hibino, Y. Yamashita, K. Kosuge and A. Tsunashima, Clays and Clay Minerals 43 (1995) 427.

    Google Scholar 

  20. F. M. Labajos, V. Rives and M. A. Ulibarri, J. Mater. Sci. 27 (1992) 1546.

    Google Scholar 

  21. T. Stanimirova and N. Petrova, Compt. Rend. Acad. Bulg. Sci. 51 (1998), in press.

  22. M. J. Hernandes-moreno, M. A. Ulibarri, J. L. Rendon and J. Serna, Phys. Chem. Minerals 12 (1985) 34.

    Google Scholar 

  23. T. Stanimirova and N. Petrova, Compt. Rend. Acad. Bulg. Sci. 51 (1998), in press.

  24. A. J. Frueh, JR. and J. P. Golightly, Can. Mineral. 10 (1967) 51.

    Google Scholar 

  25. G. W. Brindley, Mineral. Mag. 43 (1980) 1047.

    Google Scholar 

  26. Handbook of Chemistry, Vol. 2, Chimia, Moscow (1963) 152 (Russian).

  27. S. Miyata and A. Okada, Clays and Clay Minerals 25 (1977) 14.

    Google Scholar 

  28. L. L. Musselman and H. L. Green, US Patent no. 5,480,587 (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanimirova, T., Vergilov, I., Kirov, G. et al. Thermal decomposition products of hydrotalcite-like compounds: low-temperature metaphases. Journal of Materials Science 34, 4153–4161 (1999). https://doi.org/10.1023/A:1004673913033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004673913033

Keywords

Navigation