Skip to main content
Log in

Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Numerous studies in many tumor types have demonstrated that quantitation by microvessel as a measure of angiogenesis is a powerful prognostic tool. However, the ability to exploit tumor angiogenesis as a prognostic marker is limited by the methods currently used for capillary identification and quantitation. This report critically evaluates all aspects of the techniques and their associated problems used for assessing tumor angiogenesis in tissue sections including the area of tumor assessed, the vascular parameter measured, the method of quantitation, the stratification of patients and the practical utility of computer image analysis systems. The potential of angiogenic factors assays, proteolytic enzymes, and cell adhesion molecules as surrogate endpoints for quantifying tumor angiogenesis are discussed and other methods for quantifying tumor angiogenesis are described. The potential clinical applications of these angiogenic markers in prognosis, stratification for adjuvant treatments (both cytotoxic and anti-angiogenic/vascular targeting) and other aspects of patient management is also discussed, particularly design of phase I and II trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Folkman J: Tumour angiogenesis: Therapeutic implications. N. Engl J Med 285:82–86, 1971

    Google Scholar 

  2. Brem S, Cotran R, Folkman J: Tumor angiogenesis: a quantitative method for histological grading. J Natl Cancer Inst 48:347–356, 1972

    Google Scholar 

  3. Mlynek M, van Beunigen D, Leder L-D, et al.: Measurement of the grade of vascularisation in histological tumor tissue sections. Br J Cancer 52:945–948, 1985

    Google Scholar 

  4. Svrivastava A, Laidler P, Davies R, et al.: The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 thick) skin melanoma. Am J Pathol 133:419–423, 1988

    Google Scholar 

  5. Porschen R, Classen S, Piontek M, et al.: Vascularization of carcinomas of the esophagus and its correlation with tumor proliferation. Cancer Res 54:587–591, 1994

    Google Scholar 

  6. Weidner N, Semple JP, Welch WR, et al.: Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8, 1991

    Google Scholar 

  7. Weidner N, Folkman J, Pozza F, et al.: Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma (see comments). J Natl Cancer Inst 84:1875–1887, 1992

    Google Scholar 

  8. Weidner N, Carroll PR, Flax J, et al.: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409, 1993

    Google Scholar 

  9. Bosari S, Lee AK, DeLellis RA, et al.: Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23:755–761, 1992

    Google Scholar 

  10. Macchiarini P, Fontanini G, Hardin MJ, et al.: Relation of neovascularisation to metastasis of non-small cell lung cancer. Lancet 340:145–146, 1992

    Google Scholar 

  11. Macchiarini P, Fontanini G, Dulmet E, et al.: Angiogenesis: an indicator of metastasis in non-small cell lung cancer invading the thoracic inlet. Ann Thor Surg 57:1534–1539, 1994

    Google Scholar 

  12. Toi M, Kashitani J, Tominaga T: Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 55:371–374, 1993

    Google Scholar 

  13. Wakui S, Furusato M, Itoh T, et al.: Tumour angiogenesis in prostatic carcinoma with and without bone marrow metastasis: a morphometric study. J Pathol 168:257–262, 1992

    Google Scholar 

  14. Horak ER, Leek R, Klenk N, et al.: Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340:1120–1124, 1992

    Google Scholar 

  15. Barnhill RL, Mihm MJ, Ceballos PI: Angiogenesis and regressing cutaneous malignant melanoma (letter). Lancet 339:991–992, 1992

    Google Scholar 

  16. Bigler S, Deering R, Brawer M: Comparisons of microscopic vascularity in benign and malignant prostate tissue. Human Pathol 24:220–226, 1993

    Google Scholar 

  17. Ogawa Y, Chung Y, Nakata B, et al.: An evaluation of angiogenesis in breast cancer with factor VIII related antigen staining. Proc Am Asoc Cancer Res 35:186 (abstr 1113), 1994

    Google Scholar 

  18. Bundred N, Bowcott M, Walls J, et al.: Angiogenesis in breast cancer predicts node metastasis and survival. Br J Surgery 81:768 (Abstract), 1994

    Google Scholar 

  19. Dickinson AJ, Fox SB, Persad RA, et al.: Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br J Urol 74:762–766, 1994

    Google Scholar 

  20. Jaeger T, Weidner N, Chew K, et al.: Tumor angiogenesis predicts lymph node metastasis in invasive bladder cancer. Proc Am Assoc Cancer Res 35:66 (abstract 394), 1994

    Google Scholar 

  21. Li V, Folkerth R, Watanabe H, et al.: Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumors. Lancet 344:82–86, 1994

    Google Scholar 

  22. Olivarez D, Ulbright T, DeRiese W, et al.: Neovascularization in clinical stage A testicular germ cell tumor: prediction of metastatic disease. Cancer Res 54:2800–2802, 1994

    Google Scholar 

  23. Vesalainen S, Lipponen P, Talja M, et al.: Tumor vascularity and basement membrane structure as prognostic factors in T1-2M0 prostatic adenocarcinoma. Anticancer Res 14:709–714, 1994

    Google Scholar 

  24. Simpson J, Ahn C, Battifora H, et al.: Vascular surface area as a prognostic indicator in invasive breast carcinoma. Lab Invest 70:22A (abstract), 1994

    Google Scholar 

  25. Smith-McCune K, Weidner N: Demonstration and characterization of the angiogenic properties of cervival dysplasia. Cancer Res 54:800–804, 1994

    Google Scholar 

  26. Brawer MK, Deering RE, Brown M, et al.: Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73:678–687, 1994

    Google Scholar 

  27. Albo D, Granick M, Jhala N, et al.: The relationship of angiogenesis to biological activity in human squamous cell carcinomas of the head and neck. Ann Plast Surg 32:558–594, 1994

    Google Scholar 

  28. Wiggins DL, Granai CO, Steinhoff MM, et al.: Tumor angiogenesis as a prognostic factor in cervical carcinoma. Gynecol Oncol 56:353–356, 1995

    Google Scholar 

  29. Van HM, Knox WF, Dhesi SS, et al.: Assessment of tumor vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur J Cancer, 1993

  30. Hall NR, Fish DE, Hunt N, et al.: Is the relationship between angiogenesis and metastasis in breast cancer real? Surg Oncol 1:223–229, 1992

    Google Scholar 

  31. Sightler H, Borowsky A, Dupont W, et al.: Evaluation of tumor angiogenesis as a prognostic marker in breast cancer. Lab Invest 70:22A (abstract), 1994

    Google Scholar 

  32. Rutgers JL, Mattox TF, Vargas MP: Angiogenesis in uterine cervical squamous cell carcinoma. Int J Gynecol Pathol 14:114–118, 1995

    Google Scholar 

  33. Ohsawa M, Tomita Y, Kuratsu S, et al.: Angiogenesis in malignant fibrous histiocytoma. Oncology 52:51–54, 1995

    Google Scholar 

  34. Barnhill R, Busam K, Berwick M, et al.: Tumour vascularity is not a prognostic factor for cutaneous melanoma. Lancet 344:1237–1238, 1994

    Google Scholar 

  35. Axelsson K, Ljung B, Moore II D, et al.: Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J Natl Cancer Inst 87, 1995

  36. Protopapa E, Delides GS, Revesz L: Vascular density and the response of breast carcinomas to mastectomy and adjuvant chemotherapy. Eur J Cancer, 1993

  37. McCarthy SA, Kuzu I, Gatter KC, et al.: Heterogeneity of the endothelial cell and its role in organ preference of tumor metastasis. Trends Pharmacol Sci 12:462–467, 1991

    Google Scholar 

  38. Kuzu I, Bicknell R, Harris AL, et al.: Heterogeneity of vascular endothelial cells with relevance to diagnosis of vascular tumors. J Clin Pathol 45:143–148, 1992

    Google Scholar 

  39. Parums D, Cordell J, Micklem K, et al.: JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J Clin Pathol 43:752–757, 1990

    Google Scholar 

  40. Fox SB, Leek R, Smith K, et al.: Tumor angiogenesis in node negative breast carcinomas-relationship to epidermal growth factor receptor and survival. Breast Cancer Res Treat 29:109–116, 1994

    Google Scholar 

  41. Ottinetti A, Sapino A: Morphometric evaluation of microvessels surrounding hyperplastic and neoplastic mammary lesions. Breast Cancer Res Treat 11:241–248, 1988

    Google Scholar 

  42. Sahin A, Sneige N, Singletary E, et al.: Tumor angiogenesis detected by Factor-VIII immunostaining in node-negative breast carcinoma (NNBC): a possible predictor of distant metastasis. Mol Pathol 5:17A (abstract), 1992

    Google Scholar 

  43. Weidner N, Gasparini G: Determination of epidermal growth factor receptor provides additional prognostic information to measuring tumor angiogenesis in breast carcinoma patients. Breast Cancer Res Treat 29:97–108, 1994

    Google Scholar 

  44. Carnochan P, Briggs JC, Westbury G, et al.: The vascularity of cutaneous melanoma: a quantitative histological study of lesions 0.85–1.25 mm in thickness. Br J Cancer 64:102–107, 1991

    Google Scholar 

  45. Barnhill RL, Fandrey K, Levy MA, et al.: Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab Invest 67:331–337, 1992

    Google Scholar 

  46. Visscher D, Smilanetz S, Drozdowicz S, et al.: Prognostic significance of image morphometric microvessel enumeration in breast carcinoma. Anal Quant Cytol 15:88–92, 1993

    Google Scholar 

  47. Visscher D, DeMattia F, Boman S: Technical factors affecting image morphometric microvessel density counts in breast carcinomas. Lab Invest 70:168A (abstract), 1994

    Google Scholar 

  48. Burrows FJ, Thorpe PE: Vascular targeting — a new approach to the therapy of solid tumors. Pharmacol Ther 64:155–174, 1994

    Google Scholar 

  49. Weidner N, Gasparini G, Bevilacqua P, et al.: Tumor microvessel density, p53 expression, and tumor size area relevant prognostic markers in node negative breast carcinomas. Lab Invest 70:A24 (abstract), 1994

    Google Scholar 

  50. Barbareschi M, Weidner N, Gasparini G, et al.: Microvessel quantitation in breast carcinomas. Appl Immunochem 3:75–84, 1995

    Google Scholar 

  51. Fox SB, Leek RD, Weekes. M P, et al.: Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count and computer image analysis. J Pathol in press, 1995

  52. Furusato M, Wakui S, Sasaki H, et al.: Tumour angiogenesis in latent prostatic carcinoma. Br J Cancer 70:1244–1246, 1994

    Google Scholar 

  53. Williams JK, Carlson GW, Cohen C, et al.: Tumor angiogenesis as a prognostic factor in oral cavity tumors. Am J Surg 168:373–380, 1994

    Google Scholar 

  54. Wesseling P, Vandersteenhoven JJ, Downey BT, et al.: Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. A light microscopic and immunohistochemical study of formalin-fixed, routinely processed material. Acta Neuropathol (Berl) 85:508–514, 1993

    Google Scholar 

  55. Charpin C, Devictor B, Bergeret D, et al.: CD31 Quantitative immunocytochemical assays in breast carcinomas. Am J Clin Pathol 103:443–448, 1995

    Google Scholar 

  56. Chalkley H: Method for the quantative morphological analysis of tissues. J Nat Cancer Inst 4:47–53, 1943

    Google Scholar 

  57. Guinebretiere JM, Le MG, Gavoille A, et al.: Angiogenesis and risk of breast cancer in women with fibrocystic disease (letter). J Natl Cancer Inst 86:635–636, 1994

    Google Scholar 

  58. Paweletz N, Knierim M: Tumor-related angiogenesis. Crit Rev Oncol Hematol 9:197–242, 1989

    Google Scholar 

  59. Blood CH, Zetter BR: Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1032:89–118, 1990

    Google Scholar 

  60. Bicknell R, Harris AL: Novel growth regulatory factors and tumor angiogenesis. Eur J Cancer 27:781–785, 1991

    Google Scholar 

  61. Takahashi Y, Kitadai Y, Bucana CD, et al.: Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis and proliferation of human colon cancer. Cancer Res 55:3964–3968, 1995

    Google Scholar 

  62. Brown LF, Berse B, Jackman RW, et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 26:86–91, 1995

    Google Scholar 

  63. Moghaddam A, Zhang HT, Fan TP, et al.: Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92:998–1002, 1995

    Google Scholar 

  64. Anandappa SY, Winstanley JH, Leinster S, et al.: Comparative expression of fibroblast growth factor mRNAs in benign and malignant breast disease. Br J Cancer 69:772–776, 1994

    Google Scholar 

  65. Reynolds K, Farzaneh F, Collins WP, et al.: Correlation of ovarian malignancy with expression of platelet-derived endothelial cell growth factor. J Natl Cancer Inst. In press, 1994

  66. Garver RJ, Radford DM, Donis KH, et al.: Midkine and pleiotrophin expression in normal and malignant breasttissue. Cancer 74:1584–1590, 1994

    Google Scholar 

  67. Janot F, el Nagar NA, Morrison RS, et al.: Expression of basic fibroblast growth factor in squamous cell carcinoma of the head and neck is associated with degree of histologic differentiation. Int J Cancer 64:117–123, 1995

    Google Scholar 

  68. Gomm JJ, Smith J, Ryall GK, et al.: Localisation of basic fibroblast growth factor and transforming growth factor bl in the human mammary gland. Cancer Res 51:4685–4692, 1991

    Google Scholar 

  69. Zarnegar R, DeFrances MC: Expression of HGF-SF in normal and malignant human tissues. Exs 65:181–199, 1993

    Google Scholar 

  70. Daa T, Kodama M, Kashima K, et al.: Identification of basic fibroblast growth factor in papillary carcinoma of the thyroid. Acta Pathol Jpn 43:582–589, 1993

    Google Scholar 

  71. Wong SY, Purdie AT, Han P: Thrombospondin and other possible related matrix proteins in malignant and benign breast disease. Am J Pathol 140:1473–1482, 1992

    Google Scholar 

  72. Schultz-Hector S, Haghayegh S: B-Fibroblast growth factor expression in human and murine squamous cell carcinomas and its relationship to regional endothelial cell proliferation. Cancer Res 53:1444–1449, 1993

    Google Scholar 

  73. Alvarez JA, Baird A, Tatum A, et al.: Localisation of basic fibroblast growth factor and vascular endothelial cell growth factor in human glial neoplasms. Mod Pathol 5:303–307, 1992

    Google Scholar 

  74. Guidi A, Abu-Jawdeh G, Berse B, et al.: Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Instit 87:1237–1245, 1995

    Google Scholar 

  75. Zagzag D, Brem S, Robert F: Neovascularization and tumor growth in the rabbit brain. A model for experimental studies of angiogenesis and the blood-brain barrier. Am J Pathol 131:361–372, 1988

    Google Scholar 

  76. Visscher DW, DeMattia F, Ottosen S, et al.: Biologic and clinical significance of basic fibroblast growth factor immunostaining in breast carcinoma. Mod Pathol 8:665–670, 1995

    Google Scholar 

  77. O'Brien T, Cranston D, Fuggle S, et al.: Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 55:510–513, 1995

    Google Scholar 

  78. Toi M, Hoshina S, Takayanagi T, et al.: Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 85:1045–1049, 1994

    Google Scholar 

  79. Toi M, Hoshina S, Taniguchi T, et al.: Expression of platelet derived endothelial cell growth factor/thymidine phosphorylase in human breast cancer. Int J Cancer 64:79–82, 1995

    Google Scholar 

  80. Fox SB, Westwood M, Moghaddam A, et al.: The angiogenic factor platelet derived endothelial cell growth factor/thymidine phosphorylase is upregulated in breast cancer epithelium and endothelium. Br J Cancer (in press), 1995

  81. Fujimoto K, Ichimori Y, Kakizoe T, et al.: Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem Biophys Res Comm 180:386–392, 1991

    Google Scholar 

  82. Kondo S, Asano M, Matsuo K, et al.: Vascular endothelial grwoth factor/vascular permeability factor is detectable in the sera of tumor-bearing mice and cancer patients. Biochim Biophys Acta 1221:211–214, 1994

    Google Scholar 

  83. Nguyen M, Watanabe H, Budson AE, et al.: Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J Natl Cancer Inst 85:241–242, 1993

    Google Scholar 

  84. Nguyen M, Watanabe H, Budson AE, et al.: Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers (see comments). J Natl Cancer Inst 86:356–361, 1994

    Google Scholar 

  85. O'Brien T, Smith K, Cranston D, et al.: Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol 76:311–314, 1995

    Google Scholar 

  86. Kendall RL, Thomas KA: Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90:10705–10709, 1993

    Google Scholar 

  87. Blann AD, McCollum CN: Circulating endothelial-cell leukocyte adhesion molecules in atherosclerosis. Thromb Haemost 72:151–154, 1994

    Google Scholar 

  88. Frater-Schroder M, Risau W, Hallmann R, et al.: Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 84:5277–5281, 1987

    Google Scholar 

  89. Schweigerer L, Malerstein B, Gospodarowicz D: Tumor necrosis factor inhibits the proliferation of cultured capillary endothelial cells. Biochem Biophys Res Commun 143:997–1004, 1987

    Google Scholar 

  90. Pepper M, Montesano R: Proteolytic balance and capilary morphogenesis. Cell Differentiation and Development 32:319–328, 1990

    Google Scholar 

  91. Fisher C, Gilbertson BS, Powers EA, et al.: Interstitial collagenase is required for angiogenesis in vitro. Dev Biol 162:499–510, 1994

    Google Scholar 

  92. Kristensen P, Larsson L, Nielsen L, et al.: Human endothelial cells contain one type of plasminogen activator. FEBS Lett 168:33–37, 1994

    Google Scholar 

  93. Larsson L, Skriver L, Nielsen J, et al.: Distribution of urokinase-type activator immunoreactivity in the mouse. J Cell Biol 98:894–903, 1984

    Google Scholar 

  94. Pepper MS, Ferrara N, Orci L, et al.: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181:902–906, 1991

    Google Scholar 

  95. Pepper MS, Belin D, Montesano R, et al.: Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111:743–755, 1990

    Google Scholar 

  96. Pepper MS, Ferrara N, Orci L, et al.: Protent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831, 1992

    Google Scholar 

  97. Grondahl HJ, Christensen IJ, Rosenquist C, et al.: High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 53:2513–2521, 1993

    Google Scholar 

  98. Janicke F, Schmitt M, Pache L, et al.: Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat 24:195–208, 1993

    Google Scholar 

  99. Foekens JA, Schmitt M, van PW, et al.: Prognostic value of urokinase-type plasminogen activator in 671 primary breast cancer patients. Cancer Res 52:6101–6105, 1992

    Google Scholar 

  100. Duffy MJ, Reilly D, O'Sullivan C, et al.: Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res 50:6827–6829, 1990

    Google Scholar 

  101. Schmitt M, Janicke F, Moniwa N, et al.: Tumor-associated urokinase-type plasminogen activator: biological and clinical significance. Biol Chem Hoppe Seyler 373:611–622, 1992

    Google Scholar 

  102. Spyratos F, Martin PM, Hacene K, et al.: Multiparametric prognostic evaluation of biological factors in primary breast cancer. J Natl Cancer Inst 84:1266–1272, 1992

    Google Scholar 

  103. Sumiyoshi K, Serizawa K, Urano T, et al.: Plasminogen activator system in human breast cancer. Int J Cancer 50:345–348, 1992

    Google Scholar 

  104. Ganesh S, Sier CFM, Heerding MM, et al.: Urokinase receptor and colorectal cancer survival. Lancet 344:401–402, 1994

    Google Scholar 

  105. Fox SB, Stuart N, Smith K, et al.: High levels of uPA and PAI-1 are associated with highly angiogenic breast carcinomas. J Pathol 170(suppl):388A, 1993

    Google Scholar 

  106. Nguyen M, Strubel NA, Bischoff J: A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365:267–269, 1993

    Google Scholar 

  107. Kaplanski G, Farnarier C, Benoliel A, et al.: A novel role for E-and P-selectins: shape of endothelial cell monolayers. J Cell Sci 107:2449–2457, 1994

    Google Scholar 

  108. Koch A, Halloran MM, Haskell CJ, et al.: Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 376:517–519, 1995

    Google Scholar 

  109. Fox SB, Turner G, Gatter K, et al.: The increased expression of adhesion molecules ICAM-3, E and P selectin on breast cancer endothelium. J Pathol in press, 1995

  110. Zocchi MR, Poggi A: Lymphocyte-endothelial cell adhesion molecules at the primary tumor site in human lung and renal cell carcinomas (letter). J Natl Cancer Inst 85:246–247, 1993

    Google Scholar 

  111. Fox SB, Gatter KC, Bicknell R, et al.: Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res 53:9161–9163, 1993

    Google Scholar 

  112. Dvorak HF: Thrombosis and cancer. Hum Pathol 18:275–284, 1987

    Google Scholar 

  113. Palabrica T, Lobb R, Furie BC, et al.: Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359:848–851, 1992

    Google Scholar 

  114. Senger DR, Van DWL, Brown LF, et al.: Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12:303–324, 1993

    Google Scholar 

  115. Leavesley DI, Schwartz MA, Rosenfeld M, et al.: Integrin beta 1-and beta 3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol 121:163–170, 1993

    Google Scholar 

  116. Gamble JR, Matthias LJ, Meyer G, et al.: Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol 121:931–943, 1993

    Google Scholar 

  117. Davis CM, Danehower SC, Laurenza A, et al.: Identification of a role of the vitronectin receptor and protein kinase C in the induction of endothelial cell vascular formation. J Cell Biochem 51:206–218, 1993

    Google Scholar 

  118. Bauer J, Margolis M, Schreiner C, et al.: In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 153:437–449, 1992

    Google Scholar 

  119. Jackson CJ, Knop A, Giles I, et al.: VLA-2 mediates the interaction of collagen with endothelium during in vitro vascular tube formation. Cell Biol Int 18:859–867, 1994

    Google Scholar 

  120. Luscinskas FW, Lawler J: Integrins as dynamic regulators of vascular function. Faseb J 8:929–938, 1994

    Google Scholar 

  121. Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571, 1994

    Google Scholar 

  122. Brooks PC, Montgomery AM, Rosenfeld M, et al.: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164, 1994

    Google Scholar 

  123. Brooks PC, Stromblad S, Klemke R, et al.: Antiintegrin β 3 αv blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822, 1995

    Google Scholar 

  124. Iozzo RV: Tumor stroma as a regulator of neoplastic behaviour. Lab Invest 73:157–160, 1995

    Google Scholar 

  125. Lochter A, Bissell MJ: Involvement of extracellular matrix constituents in breast cancer. Cancer Biol 6:165–173, 1995

    Google Scholar 

  126. Schadendorf D, Heidel J, Gawlik C, et al.: Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selection on intratumoral vessels. J Natl Cancer Inst 87:366–371, 1995

    Google Scholar 

  127. Kageshita T, Yoshii A, Kimura T, et al.: Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer Res 53:4927–4932, 1993

    Google Scholar 

  128. Banks RE, Gearing AJ, Hemingway IK, et al.: Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer 68:122–124, 1993

    Google Scholar 

  129. Warren B: The vascular morphology of tumors. In: Peterson H (ed). Tumor Blood Circulation Boca Raton, Fla: CRC Press, 1979, pp 1–47

    Google Scholar 

  130. Paku S, Lapis K: Morphological aspects of angiogenesis in experimental liver metastases. Am J Pathol 143:926–936, 1993

    Google Scholar 

  131. Lauk S, Zietman A, Skates S, et al.: Comparative morphometric study of tumor vasculature in human squamous cell carcinomas and their xenotransplants in athymic nude mice. Cancer Res 49:4557–4561, 1989

    Google Scholar 

  132. Smolle J, Soyer HP, Hofmann-Wellenhof, et al.: Vascular archictecture of melanocytic skin tumors. Path Res Pract 185:740–745, 1989

    Google Scholar 

  133. Cockerell CJ, Sonnier G, Kelly L, et al.: Comparative analysis of neovascularisation in primary cutaneous melanoma and Spitz nevus. Am J Dermatopathol 16:9–13, 1994

    Google Scholar 

  134. Folberg R, Rummelt V, Ginderdeuren R-V, et al.: The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100:1389–1398, 1993

    Google Scholar 

  135. Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465, 1989

    Google Scholar 

  136. Jain RK: Barriers to drug delivery in solid tumors. Sci Am 271:58–65, 1994

    Google Scholar 

  137. Jain RK: Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 9:253–266, 1990

    Google Scholar 

  138. Mitchell BS, Schumacher U, Kaiserling E: Are tumors innervated? Immunohistological investigations using antibodies against the neuronal marker protein gene product 9.5 (PGP 9.5) in benign, malignant and experimental tumors. Tumour Biol 15:269–274, 1994

    Google Scholar 

  139. Nystrom C, Forssman L, Roos B: Myometrial blood flow studies in carcinoma of the corpus uteri. Acta Radiol Ther 8:193–198, 1969

    Google Scholar 

  140. Frouge C, Guinbretiere J, Contesso G, et al.: Correlation between contrast enhancement in dynamic magnetic resonance imaging of the breast and tumor angiogenesis. Invest Radiol 29:1043–1049, 1994

    Google Scholar 

  141. Lee WJ, Chu JS, Houng SJ, et al.: Breast cancer angiogenesis: a quantitative morphologic and Doppler imaging study. Ann Surg Oncol 2:246–251, 1995

    Google Scholar 

  142. Antonic J, Rakar S: Colour and pulsed doppler US and tumor marker CA125 in differentiation between benign and malignant ovarian masses. Anticancer Res 15:1527–1532, 1995

    Google Scholar 

  143. Wu CC, Lee CN, Chen TM, et al.: Incremental angiogenesis assessed by color Doppler ultrasound in the tumorigenesis of ovarian neoplasms. Cancer 73:1251–1256, 1994

    Google Scholar 

  144. Toi M, Inada K, Suzuki H, et al.: Tumor angiogenesis in breast cancer: its importance as a prognostic indicator and the association with vascular endothelial growth factor expression. Breast Cancer Res Treat 36:193–204, 1995

    Google Scholar 

  145. Ogawa Y, Chung Y, Nakata B, et al.: Microvessel quantitation in invasive breast cancer by staining for factor VIII-related antigen. Br J Cancer 71:1297–1301, 1995

    Google Scholar 

  146. Gasparini G, Weidner N, Bevilacqua P, et al.: Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma (see comments). J Clin Oncol 12:454–466, 1994

    Google Scholar 

  147. Lipponen P, Ji H, Aaltomaa S, et al.: Tumour vascularity and basement membrane structure in breast cancer as related to tumor histology and prognosis. J Cancer Res Clin Oncol 120:645–650, 1994

    Google Scholar 

  148. Palczak R, Splawinski J: Angiogenic activity and neovascularization in adenocarcinoma of endometrium. Int J Gynaecol Obstet 29:343–357, 1989

    Google Scholar 

  149. Hollingsworth HC, Kohn EC, Steinberg SM, et al.: Tumor angiogenesis in advanced stage ovarian carcinoma (see comments). Am J Pathol 147:33–41, 1995

    Google Scholar 

  150. Hall MC, Troncoso P, Pollack A, et al.: Significance of tumor angiogenesis in clinically localized prostate carcinoma treated with external beam radiotherapy. Urology 44:869–875, 1994

    Google Scholar 

  151. Jaeger T, Weidner N, Chew K, et al.: Tumor angiogenesis correlates with lymph node metastasis in invasive bladder cancer. J Urol 154:69–71, 1995

    Google Scholar 

  152. Giatromanolaki A, Koukourakis, O'Byrne K, et al.: Prognostic value of angiogenesis in operable non-small cell lung cancer. J Pathol in press, 1995

  153. Macda K, Chung YS, Takatsuka S, et al.: Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol 13:477–481, 1995

    Google Scholar 

  154. Saclarides TJ, Speziale NJ, Drab E, et al.: Tumor angiogenesis and rectal carcinoma. Dis Colon Rectum 37:921–926, 1994

    Google Scholar 

  155. Klijanienko J, El-Naggar A, de Braud F, et al.: Tumor vascularisation, mitotic index, histopathological grade, and DNA ploidy in the assessment of 114 head and neck squamous cell carcinomas. Cancer 75:1649–1656, 1995

    Google Scholar 

  156. Leedy DA, Trune DR, Kronz JD, et al.: Tumor angiogenesis, the p53 antigen, and cervical metastasis in squamous carcinoma of the tongue. Otolaryngol Head Neck Surg 111:417–422, 1994

    Google Scholar 

  157. Gasparini G, Weidner N, Maluta S, et al.: Intratumoral microvessel density and p53 protein: correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 55:739–744, 1993

    Google Scholar 

  158. Brem SS, M. JH, Gullino PM: Angiogenesis as a marker of pre-neoplastic lesions of the human breast. Cancer 41:239–248, 1978

    Google Scholar 

  159. Jensen HM, Chen I, DeVault MR, et al.: Angiogenesis induced by “normal” human breast tissue: a probable marker for precancer. Science 218:293–295, 1982

    Google Scholar 

  160. Guidi A, Fischer L, Harris J, et al.: Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst 86:614–619, 1994

    Google Scholar 

  161. Engels K, Fox SB, Gatter KC, et al.: Angiogenesis in ductal carcinoma in situ. J Pathol, 1995

  162. Montironi R, Galluzzi C, Diamanti L, et al.: Prostatic intraepithelial neoplasia. Qualitative and qualitative analysis of the blood capillary architecture. Path Res Pract 189:542–548, 1993

    Google Scholar 

  163. Deering RE, Bigler SA, Brown M, et al.: Microvascularity in benign prostatic hyperplasia. Prostate 26:111–115, 1995

    Google Scholar 

  164. Macaulay VM, Fox SB, Zhang H, et al.: Breast cancer angiogenesis and tamoxifen resistence. Endocr Rel Cancer 2:1–8, 1995

    Google Scholar 

  165. O'Reilly MS, Holmgren L, Shing Y, et al.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma (see comments). Cell 79:315–328, 1994

    Google Scholar 

  166. Gasparini G, Harris AL: Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13:765–782, 1995

    Google Scholar 

  167. Teicher BA, Sotomayor EA, Huang ZD: Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52:6702–6704, 1992

    Google Scholar 

  168. Johnson PW, Burchill SA, Selby PJ: The molecular detection of circulating tumor cells. Br J Cancer 72:268–276, 1995

    Google Scholar 

  169. Larsen NS: Angiogenesis research yields new approaches to cancer treatment and prognosis (news). J Natl Cancer Inst 85:1629–1630, 1993

    Google Scholar 

  170. Wang JM, Kumar S, Pye D, et al.: A monoclonal antibody detects heterogeneity in vascular endothelium of tumors and normal tissues. Int J Cancer 54:363–370, 1993

    Google Scholar 

  171. Rettig WJ, Garin CP, Healey JH, et al.: Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 89:10832–10836, 1992

    Google Scholar 

  172. Hagemeier HH, Vollmer E, Goerdt S, et al.: A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and non-reactive with normal adult tissues. Int J Cancer 38:481–488, 1986

    Google Scholar 

  173. Schlingemann RO, Dingjan GM, Emeis JJ, et al.: Monoclonal antibody PAL-E specific for endothelium. Lab Invest 52:71–76, 1985

    Google Scholar 

  174. Koch AE, Nickoloff BJ, Holgersson J, et al.: 4A11, a monoclonal antibody recognizing a novel antigen expressed on aberrant vascular endothelium. Upregulation in an in vivo model of contact dermatitis. Am J Pathol 144:244–259, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, S.B., Harris, A.L. Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Invest New Drugs 15, 15–28 (1997). https://doi.org/10.1023/A:1005714527315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005714527315

Navigation