Skip to main content
Log in

Nitrogen fixation in a desert stream ecosystem

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Few measurements of nitrogen fixation exist for streams. Desertstreams are warm, well lighted, and often supportabundant cyanobacterial populations; thus N2 fixationmay be significant in these N-poor ecosystems. N2fixation was measured in situ by acetylene reductionfor two patch types (Anabaena mat and anepilithic assemblage). Patch-specific rates were highcompared with published values (maximum 775 µgN2 [83 µmol C2H4]mg chl a -1 h-1or 51 mg N2 [5.4 mmol C2H4] m-2 h-1).Daytime fixation was higher than nighttimefixation, and temperature, light and inorganic Nconcentration explained 52% of variance in hourlyrates over all dates. Diel input-output budgets wereconstructed on five dates when cyanobacteria werepresent in the stream. Diel N2 fixation rates weremeasured for comparison with reach-scale diel nitrogenretention, to assess the importance of this vector to Neconomy of the stream. Fixation accounted for up to85% of net N flux to the benthos, but its importancevaried seasonally. Finally, we applied biomass-specificfixation rates to 1992 and 1993 biomass data to obtainseasonal and annual N2 fixation estimates.Cyanobacteria were absent or rare during winter andspring, thus most of the annual N2 fixation occurredduring summer and autumn. Annual rates of nitrogenfixation for 1992 and 1993 (8.0 g/m2 and 12.5g/m2) were very high compared to other streams,and moderately high compared to other ecosystems.Like other phenomena in this disturbance-proneecosystem, nitrogen fixation is strongly influenced bythe number and temporal distribution of flood events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bebout BM, Fitzpatrick MW & Paerl HW (1993) Identification of the sources of energy for nitrogen fixation and physiological characterization of nitrogen-fixing members of a marine microbial mat community. Appl. Environ. Microbiol. 59: 1495–1503

    Google Scholar 

  • Bebout BM, Paerl HW, Crocker KM & Prufert LE (1987) Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in amarinemicrobial mat community. Appl. Environ. Microbiol. 53: 2353–2362

    Google Scholar 

  • Bergmann MA & Welch HE (1990) Nitrogen fixation by epilithic periphyton in small arctic lakes in response to experimental nitrogen and phosphorus fertilization. Can. J. Fish.Aquat. Sci. 47: 1545–1550

    Google Scholar 

  • Bisoyi RN & Singh PK (1988) Effect of seasonal changes on cyanobacterial production and nitrogen-yield. Microb. Ecol. 16: 149–154

    Google Scholar 

  • Carpenter EJ, Van Raalte CD & Valiela I (1978) Nitrogen fixation by algae in a Massachusetts salt marsh. Limnol. Oceanogr. 23: 318–327

    Google Scholar 

  • Carr NB & Whitton BA (1982) The Biology of Cyanobacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Chapin DM, Bliss LC & Bledsoe LJ (1991) Environmental regulation of nitrogen fixation in a high arctic lowland ecosystem. Can. J. Bot. 69: 2744–2755

    Google Scholar 

  • Cummins KW, Sedell JR, Swanson FJ, Minshall GW, Fisher SG, Cushing CE, Peterson RC & Vannote RL (1983) Organic matter budgets for stream ecosystems: Problems in their evaluation. In: Barnes JR & Minshall GW (Eds) Stream Ecology: Application and Testing of General Ecological Theory (pp 299–353). Plenum Press, New York

    Google Scholar 

  • Diagne O & Baker DD (1994) Quantification of symbiotic N fixation by Prosopis juliflora(Swartz) D.C using 15N-isotope dilutionmethodology. Soil. Biol. Biochem. 26: 1709–1710

    Google Scholar 

  • Duncan SW & Blinn DW (1989) Importance of physical variables on the seasonal dynamics of epilithic algae in a highly shaded canyon stream. J. Phycol. 25: 455–461

    Google Scholar 

  • Elser JJ, Marzolf ER & Goldman CR (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Can. J. Fish. Aquat. Sci. 47: 1468–1477

    Google Scholar 

  • Fisher SG, Gray LJ, Grimm NB & Busch DE (1982) Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 52: 93–110

    Google Scholar 

  • Fisher SG & Likens GE (1973) Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439

    Google Scholar 

  • Flett RJ, Hamilton RD & Campbell NER (1976) Aquatic acetylene-reduction techniques: Solutions to several problems. Can. J. Microbiol. 22: 43–51

    Google Scholar 

  • Flett RJ, Schindler DW, Hamilton RD & Campbell NER (1980) Nitrogen fixation in Canadian Precambrian Shield lakes. Can. J. Fish. Aquat. Sci. 37: 494–505

    Google Scholar 

  • Gosz JR (1981) Nitrogen cycling in coniferous forest ecosystems. In: Rosswall T & Clark FE (Eds) Terrestrial Nitrogen Cycles 33 (pp 405–426). Ecol. Bull.

  • Grimm NB (1987) Nitrogen dynamics during succession in a desert stream. Ecology 68: 1157–1170

    Google Scholar 

  • Grimm, NB (1994) Disturbance, succession, and ecosystem processes in streams: A case study from the desert. In: Giller PS, Hildrew AJ & Raffaeli DG (Eds) Aquatic Ecology: Scale, Pattern and Process (pp 93–112). Blackwell Scientific, Oxford

    Google Scholar 

  • Grimm NB & Fisher SG (1986a) Nitrogen limitation potential of Arizona streams and rivers. J. Ariz.-Nev. Acad. Sci. 21: 31–43

    Google Scholar 

  • Grimm NB & Fisher SG (1986b) Nitrogen limitation in a Sonoran Desert stream. J. No. Amer. Benthol. Soc. 5: 2–15

    Google Scholar 

  • Grimm NB & Fisher SG (1989) Stability of a desert stream ecosystems to disturbance by flash floods. J. No. Amer. Benthol. Soc. 8

  • Grimm NB & Fisher SG (1992) Responses of arid land streams to changing climate. In: Firth P & Fisher SG (Eds) Global Climate Change and Freshwater Ecosystems (pp 211–233). Springer-Verlag, New York

    Google Scholar 

  • Grimm NB, Fisher SG & Minckley WL (1981) Nitrogen and phosphorus dynamics in hot desert streams of Southwestern USA. Hydrobiologia 83: 303–312

    Google Scholar 

  • Hanson, RB & Gundersen K (1977) Relationship between nitrogen fixation (acetylene reduction) and the C:N ratio in a polluted coral reef ecosystem, Kaneohe Bay, Hawaii. Est. Coastal Mar. Sci. 5: 437–444

    Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK & Burns RC (1968) The acetylene-ethylene assay for N2fixation: Laboratory and field evaluation. Plant Physiol. 43: 1185–1207

    Google Scholar 

  • Hendzel LL, Hecky RE & Findlay DL (1994) Recent changes in N2-fixation in Lake 227 in response to reduction of the N:P loading ratio. Can. J. Fish. Aqu. Sci. 51: 2247–2253

    Google Scholar 

  • Hererra R & Jordan CF (1981) Nitrogen cycle in a tropical Amazonian rain forest: The caatinga of low mineral nutrient status. In: Rosswall T & Clark FE (Eds) Terrestrial Nitrogen Cycles 33 (pp 493–506). Ecol. Bull.

  • Horne AJ (1975) Algal nitrogen fixation in California streams: Diel cycles and nocturnal fixation. Freshwat. Biol. 5: 471–477

    Google Scholar 

  • Horne, AJ (1972) The ecology of nitrogen fixation on Signy Island, South Orkney Island. Brit. Antarctic Surv. Bull. 27: 1–18

    Google Scholar 

  • Horne AJ & Carmiggelt WW (1975) Algal nitrogen fixation in California streams: seasonal cycles. Freshwat. Biol. 5: 461–470

    Google Scholar 

  • Horne AJ & Galat DL (1985) Nitrogen fixation in an oligtrophic, saline desert lake: Pyramid Lake, Nevada. Limnol. Oceanogr. 30: 1229–1239

    Google Scholar 

  • Howarth RW, Marino R & Cole JJ (1988b) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33: 688–702

    Google Scholar 

  • Howarth RW, Marino R, Lane J & Cole JJ (1988a) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 669–687

    Google Scholar 

  • Jarrell WM & Virginia RA (1990) Soil cation accumulation in a mesquite woodland: Sustained production and long-term estimates of water use and nitrogen fixation. J. Arid Environ. 18: 51–58

    Google Scholar 

  • Jones K (1992) Diurnal nitrogen fixation in tropical marine cyanobacteria: A comparison between adjacent communities of non-heterocystous Lyngbyasp. and heterocystous Calothrixsp. Brit. Phycol. J. 27: 107–118

    Google Scholar 

  • Joye SB & Paerl HW (1994) Nitrogen cycling in microbial mats: Rates and patterns of denitrification and nitrogen fixation. Mar. Biol. 119: 285–295

    Google Scholar 

  • Klingensmith KM & Van Cleve K (1993) Denitrification and nitrogen fixation in floodplain successional soils along the Tanana River, interior Alaska. Can. J. For. Res. 23: 956–963

    Google Scholar 

  • Leland HV & Carter JL (1985) Effects of copper on production of periphyton, nitrogen fixation and processing of leaf litter in a Sierra Nevada, California, stream. Freshwat. Biol. 15: 155–173

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73: 1943–1967

    Google Scholar 

  • Marino R, Howarth RW, Shamess J & Prepas E (1990) Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnol. Oceanogr. 35: 245–259

    Google Scholar 

  • Melillo JM (1981) Nitrogen cycling in deciduous forests. In: Rosswall T & Clark FE (Eds). Terrestrial nitrogen cycles. Ecol. Bull. 33: 427–442

  • Murphy J & R iley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36

    Google Scholar 

  • Naiman RJ & Melillo JM (1984) Nitrogen budget of a subarctic stream altered by beaver (Castor canadensis). Oecologia 62: 150–155

    Google Scholar 

  • O'Neill RW, DeAngelis DJ,Waide J & Allen TH (1986) A hierarchical concept of ecosystems. Monographs in Population Biology, Vol. 23. Princeton University Press, Princeton

  • Peterson CG & Grimm NB (1992) Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. J. No. Amer. Benthol. Soc. 11: 20–36

    Google Scholar 

  • Pickett ST, Kolasa J & Jones CG (1994) Ecological Understanding. Academic Press, New York

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Amer. Sci. 46: 205–221

    Google Scholar 

  • Rueter JG & Peterson RR (1987) Macronutrient effects on cyanobacterial growth and physiology. New Zeal. J. Mar. Freshwat. Res. 21: 435–445

    Google Scholar 

  • Rychert R, Skujins J, Sorenson D & Porcella D (1978) Nitrogen fixation by lichens and freeliving microorganisms in deserts. In: West NE & Skujins JJ (Eds) Nitrogen in Desert Ecosystems (pp 20–30). Dowden, Hutchinson, & Ross, Stroudsburg

    Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195: 260–262

    Google Scholar 

  • Smith VH (1990) Nitrogen, phosphorus, and nitrogen fixation in lacustrine and estuarine ecosystems. Limnol. Oceanogr. 35: 1852–1859

    Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801

    Google Scholar 

  • Sprent J (1987) Ecology of the Nitrogen Cycle. Cambridge University Press.

  • Stewart WDP, Fitzgerald GP & Burris RH (1967) In situ studies on nitrogen fixation using the acetylene reduction technique. Proc. Na. Acad. Sci. 58: 2071–2078

    Google Scholar 

  • Stream SoluteWorkshop (1990) Concepts andmethods for assessing solute dynamics in stream ecosystems. J. No. Amer. Benthol. Soc. 9: 95–119

    Google Scholar 

  • Tett P, KellyMG & Hornberger GM(1975) A method for the spectrophotometic measurement of chlorophyll aand pheophytin ain benthic microalgae. Limnol. Oceanogr. 20: 887–896

    Google Scholar 

  • Tilman D, Kiesling R, Sterner R, Kilham SS & Johnson FA (1986) Green, bluegreen and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485

    Google Scholar 

  • Tilman D, Kilham SS & Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Sys. 13: 349–372

    Google Scholar 

  • Triska FJ, Sedell JR, Cromack K Jr, Gregory SV & McCorison FM (1984) Nitrogen budget for a small coniferous forest stream. Ecol. Monogr. 54: 119–140

    Google Scholar 

  • Valett HM, Fisher SG, Grimm NB & Camill P (1994) Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology 75: 548–560

    Google Scholar 

  • Van Cleve K & Alexander V (1981) nitrogen cycling in tundra and boreal ecosystems. In: Rosswall T & Clark FE (Eds) Terrestrial Nitrogen Cycles 33 (pp 375–404). Ecol. Bull.

  • Van Raalte CD, Valiela I, Carpenter EJ & Teal JM (1974) Inhibition of nitrogen fixation in salt marshes measured by acetylene reduction. Estuar. Coast. Mar. Sci. 2: 301–305

    Google Scholar 

  • Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115

    Google Scholar 

  • Wiebe WJ, Johannes RE & Webb KL (1975) Nitrogen fixation in a coral reef community. Science 188: 257–259

    Google Scholar 

  • Wood ED, Armstrong FAJ & Richards FA (1967) Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. UK 47: 23–31

    Google Scholar 

  • Woodmansee RG, Vallis I & Mott JJ (1981) Grassland nitrogen. In: Rosswall T & Clark FE (Eds) Terrestrial Nitrogen Cycles 33 (pp 443–462). Ecol. Bull.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NANCY B. GRIMM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GRIMM, N.B., PETRONE, K.C. Nitrogen fixation in a desert stream ecosystem. Biogeochemistry 37, 33–61 (1997). https://doi.org/10.1023/A:1005798410819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005798410819

Navigation