Skip to main content
Log in

UDP-glucose:sterol glucosyltransferase: cloning and functional expression in Escherichia coli/

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Steryl glucosides are characteristic lipids of plant membranes. The biosynthesis of these lipids is catalyzed by the membrane-bound UDP-glucose:sterol glucosyltransferase (EC 2.4.1.173). The purified enzyme (Warnecke and Heinz, Plant Physiol 105 (1994): 1067–1073) has been used for the cloning of a corresponding cDNA from oat (Avena sativa L.). Amino acid sequences derived from the amino terminus of the purified protein and from peptides of a trypsin digestion were used to construct oligonucleotide primers for polymerase chain reaction experiments. Screening of oat and Arabidopsis cDNA libraries with amplified labeled DNA fragments resulted in the isolation of sterol glucosyltransferase-specific cDNAs with insert lengths of ca. 2.3 kb for both plants. These cDNAs encode polypeptides of 608 (oat) and 637 (Arabidopsis) amino acid residues with molecular masses of 66 kDa and 69 kDa, respectively. The first amino acid of the purified oat protein corresponds to the amino acid 133 of the deduced polypeptide. The absence of these N-terminal amino acids reduces the molecular mass to 52 kDa, which is similar to the apparent molecular mass of 56 kDa determined for the purified protein. Different fragments of these cDNAs were expressed in Escherichia coli. Enzyme assays with homogenates of the transformed cells exhibited sterol glucosyltransferase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A⊩raham W, Wertz PW, Burken RR, Downing DT: Glucosylsterol and acylglucosylsterol of snake epidermis: structure determination. J Lipid Res 28: 446–449 (1987).

    Google Scholar 

  2. Ahamad VU, Aliya R, Perveen S, Shameel M: A sterol glycoside from marine green alga Codium iyengarii. Phytochemistry 31: 1429–1431 (1992).

    Google Scholar 

  3. Bloch KE: Sterol structure and mem⊩rane function. Crit Rev Biochem 14: 47–92 (1983).

    Google Scholar 

  4. Bretscher MS, Munro S: Cholesterol and the Golgi apparatus. Science 261: 1280–1281 (1993).

    Google Scholar 

  5. Brown DJ, DuPont FM: Lipid composition of plasma mem⊩ranes and endomem⊩ranes prepared from roots of ⊩arley (Hordeum vulgare L.). Plant Physiol 90: 955–961 (1989).

    Google Scholar 

  6. Demel RA, De Kruyff B: The function of sterols in mem⊩ranes. Biochim Biophys Acta 457: 109–132 (1976).

    Google Scholar 

  7. Dupéron R, Dupéron P: La glycosylation des stérols chez diverses espèces de Mono et Dicotylédones: coexistence fréquente de glucosides et de galactosides stéroliques dans le tissus foliaires. C R Acad Sci Paris Série III 308: 31–34 (1989)

    Google Scholar 

  8. Dupéron R, Dupéron P: Localisation intracellulaire des activités UDP-glucose:stérol glucosyl transférase et UDPgalactose: stérol galactosyl transférase dans les feuilles de tomate (Solanum lycopersicum L., Solanaceae). C R Acad Sci Paris Série III 304: 235–238 (1987).

    Google Scholar 

  9. Eichen⊩erger W, Menke W: Sterole in Blättern und Chloroplasten. Z Naturforsch 21⊩: 859–867 (1966).

    Google Scholar 

  10. Esders TW, Light RJ: Occurence of a uridine diphosphate glucose: sterol glucosyltransferase in Candida ⊩ogoriensis. J Biol Chem 247: 248–259 (1972).

    Google Scholar 

  11. Frolov A, Woodford JK, Murphy EJ, Billheimer JT, Schroeder F: Spontaneous and protein-mediated sterol transfer ⊩etween intracellular mem⊩ranes. J Biol Chem 271: 16075–16083 (1996).

    Google Scholar 

  12. Fujino Y, Ohnishi M, Ito S: Molecular species of ceramide and mono-, di-, tri-, and tetraglycosylceramide in ⊩ran and endosperm of rice grains. Agric Biol Chem 49: 2753–2762 (1985).

    Google Scholar 

  13. Furtek D, Schiefel⊩ein JW, Johnston F, Nelson OE: Sequence comparisons of three wild-type Bronze-1 alleles from Zea mays. Plant Mol Biol 11: 473–481 (1988).

    Google Scholar 

  14. Ghannoum MA, Janini G, Khamis L, Radwan SS: Dimorphism-associated variations in the lipid composition of Candida al⊩icans. J Gen Micro⊩iol 132, 2367–2375 (1986).

    Google Scholar 

  15. Haque M, Hirai Y, Yokota K, Mori N, Jahan I, Ito H, Hotta H, Yano I, Kanemassa Y, Oguma K: Lipid profile of Helico⊩acter spp.: presence of cholesteryl glucoside as a characteristic feature. J Bact 178: 2065–2070 (1996).

    Google Scholar 

  16. Haschke H-P, Kaiser G, Martinoia E, Hammer U, Teucher T, Dorne AJ, Heinz E: Lipid profiles of leaf tonoplasts from plants with different CO2-fixation mechanisms. Bot Acta 103: 32–38 (1990).

    Google Scholar 

  17. Hazel JR, Williams EE: The role of alterations in mem⊩rane lipid composition in ena⊩ling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29: 167–227 (1990).

    Google Scholar 

  18. Heinz E: Plant glycolipids: structure, isolation and analysis. In: Christie WW (ed) Advances in Lipid Methodology, vol 3, pp. 211–332. Oily Press, Dundee (1996).

    Google Scholar 

  19. Hirai Y, Haque M, Yoshida T, Yokota K, Yasuda T, Oguma K: Unique cholesteryl glucosides in Helico⊩acter pylori: composition and structural analysis. J Bact 177: 5327–5333 (1995).

    Google Scholar 

  20. Iri⊩arren AM, Pomilio AB: Sitosterol 3-O-β-D-xylopyranoside from Bauhinia candicans. Phytochemistry 23: 2087–2088 (1984).

    Google Scholar 

  21. Johansson I, Larsson C, Ek B, Kjell⊩om P: The major integral proteins of spinach leaf plasma mem⊩ranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8: 1181–1191 (1996).

    Google Scholar 

  22. Kastelic-Suhadolc T: Cholesteryl glycoside in Candida ⊩ogoriensis. Biochim Biophys Acta 620: 322–325 (1980).

    Google Scholar 

  23. Kim Y, Kim EJ, Rea PA: Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol 106: 375–382 (1994).

    Google Scholar 

  24. Kojima M, Ohnishi M, Ito S, Fujino Y: Characterization of acylmono-, mono-, di-, tri-and tetraglycosylsterol and saponin in adzuki ⊩ean (Vigna angularis) seeds. Lipids 24: 849–853 (1989).

    Google Scholar 

  25. Lange Y, Steck TL: The role of intracellular cholesterol transport in cholesterol homeostasis. Trends Cell Biol 6: 205–208 (1996).

    Google Scholar 

  26. Lehle L: Biosynthesis of the core region of yeast mannoproteins. Eur J Biochem 109: 589–601 (1980).

    Google Scholar 

  27. Liscum L, Underwood KW: Intracellular cholesterol transport and compartmentation. J Biol Chem 270: 15443–15446 (1995).

    Google Scholar 

  28. Livermore BP, Bey RF, Johnson RC: Lipid meta⊩olism of Borrelia hermsi. Infect Immun 20: 215–220 (1978).

    Google Scholar 

  29. Lynch DV, Steponkus PL: Plasma mem⊩rane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). Plant Physiol 83: 761–767 (1987)

    Google Scholar 

  30. May⊩erry WR, Smith PF: Structures and properties of acyl diglucosylcholesterol and galactofuranosyl diacylglycerol from Acholeplasma axanthum. Biochim Biophys Acta 752: 434–443 (1983).

    Google Scholar 

  31. McKersie BD, Thompson JE: Influence of plant sterols on the phase properties of phospholipid ⊩ilayers. Plant Physiol 63: 802–805 (1979).

    Google Scholar 

  32. McMorris TC, White RH: Cholesterol β-D-glucoside-6′-O-palmitate, a meta⊩olite of Phytium sylvaticum. Biochim Biophys Acta 486: 308–312 (1977).

    Google Scholar 

  33. Moehs CP, Allen PV, Friedman M, Belknap WR: Cloning and expression of solanidine UDP–glucose glucosyltransferase from potato. Plant J 11: 227–236 (1997).

    Google Scholar 

  34. Mudd JB, McManus TT: Effect of steryl glycosides on the phase transition of dipalmitoyl lecithin. Plant Physiol 65: 78–80 (1980).

    Google Scholar 

  35. Murakami-Murofushi K, Nishikawa K, Hirakawa E, Murofushi H: Heat stress induces a glycosylation ofmem⊩rane sterol in myxoamoe⊩ae of a true slime mold, Physarum polycephalum. J Biol Chem 272: 486–489 (1997).

    Google Scholar 

  36. Nakai K, Kanehisa M: Aknowledge ⊩ase for predicting protein localization in eukaryotic cells. Genomics 14: 897–911 (1992).

    Google Scholar 

  37. Nes WD, Janssen GG, Crumley FG, Kalinowska M, Akihisa T: The structural requirements of sterols formem⊩rane function in Saccharomyces cerevisiae. Arch Biochem Biophys 300: 724–733 (1993).

    Google Scholar 

  38. Ochsner UA, Fiechter A, Reiser J: Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid ⊩iosurfactant synthesis. J Biol Chem 269: 19787–19795 (1994).

    Google Scholar 

  39. Palta JP, Whitaker B, Weiss LS: Plasma mem⊩rane lipids associated with genetic varia⊩ility in freezing tolerance and cold acclimation of Solanum species. Plant Physiol 103: 793–803 (1993).

    Google Scholar 

  40. Patel KR, Smith PF, May⊩erry WR: Comparison of lipids from Spiroplasma citri and corn stunt spiroplasma. J Bact 136: 829–831 (1978).

    Google Scholar 

  41. Reinhart MP: Intracellular sterol trafficking. Experientia 46: 599–611 (1990).

    Google Scholar 

  42. Ritter JK, Sheen YY, Owen IS: Cloning and expression of human liver UDP-glucuronosyltransferase in COS-1 cells; 3,4-catechol estrogens and estriol as primary su⊩strates. J Biol Chem 265: 7900–7906 (1990).

    Google Scholar 

  43. Rodriguez RJ, Low C, Bottema CD, Parks LW: Multiple functions for sterols in Saccharomyces cerevisiae.Biochim Biophys Acta 837: 336–343 (1985).

    Google Scholar 

  44. Sanger F, Nicklen S, Coulson RA: DNA sequencing with chainterminating inhi⊩itors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  45. Sarafian V, Kim Y, Poole RJ, Rea PA: Molecular cloning and sequence of cDNA encoding the pyrophosphatase-energized vacuolarmem⊩rane proton pump of Ara⊩idopsis thaliana. Proc Natl Acad Sci USA 89: 1775–1779 (1992).

    Google Scholar 

  46. Schulte S, Stoffel W: Ceramide UDPgalactosylransferase from myelinating rat ⊩rain: purification, cloning, and expression. Proc Natl Acad Sci USA 90: 10265–10269 (1993).

    Google Scholar 

  47. Serrano R: Plasma mem⊩rane ATPase. In: Larsson C, Moller IM (eds) The Plant PlasmaMem⊩rane, pp. 127–153. Springer-Verlag, Berlin (1990).

    Google Scholar 

  48. Smith PF: Biosynthesis of cholesteryl glucoside ⊩y Mycoplasma gallinarum. J Bacteriol 108: 986–991 (1971).

    Google Scholar 

  49. Työrinoja K, Nurminen T, Suomalainen H: The cell-envelope glycolipids of ⊩aker's yeast. Biochem J 141: 133–139 (1974).

    Google Scholar 

  50. Uemura M, Joseph RA, Steponkus PL: Cold acclimation of Ara⊩idopsis thaliana. Plant Physiol. 109: 15–30 (1995).

    Google Scholar 

  51. Uemura M, Steponkus PL: A contrast of the plasma mem⊩rane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104: 479–496 (1994).

    Google Scholar 

  52. Ullmann P, Ury A, Rimmele D, Benveniste P, Bouvier-Navé P: UDP-glucose sterolβ-D-glucosyltransferase, a plasma mem⊩rane⊩ound enzyme of plants: enzymatic properties and lipid dependence. Biochimie 75: 713–723 (1993).

    Google Scholar 

  53. Verhoek B, Haas R, Wrage K, Linscheid M, Heinz E: Lipids and enzymatic activities in vacuolar mem⊩ranes isolated via protoplasts from oat primary leaves. Z Naturforsch 38c: 770–777 (1983).

    Google Scholar 

  54. Warnecke DC, Heinz E: Purification of a mem⊩rane-⊩ound UDP-glucose:sterol β-D-glucosyltransferase ⊩ased on its solu⊩ility in diethyl ether. Plant Physiol 105: 1067–1073 (1994).

    Google Scholar 

  55. We⊩⊩ MS, Irving TC, Steponkus PL: Effects of plant sterols on the hydration and phase ⊩ehavior of DOPE/DOPC mixtures. Biochim Biophys Acta 1239: 226–238 (1995).

    Google Scholar 

  56. Wertz PW, Stover PM, A⊩raham W, Downing DT: Lipids of chicken epidermis. J Lipid Res 27: 427–435. (1986)

    Google Scholar 

  57. Wojciechowski ZA: Biochemistry of phytosterol conjuga-tes. In: Patterson GW, Nes WD (eds) Physiology and Biochemistry of Sterols, pp 361–395. American Oil Chemists' Society, Champaign, IL (1991).

    Google Scholar 

  58. Yeagle PL: Cholesterol and the cell mem⊩rane. Biochim Biophys Acta 822: 267–287 (1985).

    Google Scholar 

  59. Yoshida S, Uemura M: Lipid composition of plasma mem⊩ranes and tonoplasts isolated from etiolated seedlings ofmung ⊩ean (Vigna radiata L.). Plant Physiol 82: 807–812 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warnecke, D.C., Baltrusch, M., Buck, F. et al. UDP-glucose:sterol glucosyltransferase: cloning and functional expression in Escherichia coli/. Plant Mol Biol 35, 597–603 (1997). https://doi.org/10.1023/A:1005806119807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005806119807

Navigation