Skip to main content
Log in

In vitro propagation of cauliflower, Brassica oleracea var. botrytis for hybrid seed production

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Methods for obtaining heterotic F1 and maintaining purebred lines for breeding of Brassica oleracea are limited by absence of male sterile lines and occurrence of inbreeding depression, respectively. The use of vegetative (stem, petiole, leaf, leaf rib) and floral (peduncle, pedicel, flower bud, curd) explants of cauliflower to regenerate purebred lines for crossing were examined. Of four growth regulator treatments and explant types used, best results were obtained with curd explants on MS medium with 6-benzyladenine (cytokinin) and gibberellic acid. Although 6-benzyladenine alone promoted formation of shoots in floral explants, both 6-benzyladenine and α-napthaleneacetic acid were required for vegetative explants. Use of α-napthaleneacetic acid, however, often increased callus formation. These culture techniques to maintain purebred regenerated plants will complement newly-derived nuclear-based male sterile lines obtained by the introduction of antisense copies of the gene BcpI, which is required for pollen fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson WC & Carstens JB (1977) Tissue culture propagation of broccoli, Brassica oleracea (Italica group), for use in F1 hybrid seed production. J. Amer. Soc. Hort. Sci. 102: 69-73

    CAS  Google Scholar 

  • Arora N, Yadav NR & Chowdhury JB (1996) Efficient plant regeneration in cauliflower (Brassica oleracea var. botrytis). Cruciferae Newsl. 18: 26-27

    Google Scholar 

  • Arora N, Yadav NR, Yadav RC, Chowdhury JB & Arora N (1997) Role of IAA and BAP on plant regeneration in cultured cotyledons of cauliflower. Cruciferae Newsl. 19: 41-42

    Google Scholar 

  • Bhalla PL & Smith N (1998) Agrobacterium mediated transformation of Australian cultivars of cauliflowers, Brassica oleracea var. botrytis. Molecular Breeding 4 (6): 531-541

    Article  CAS  Google Scholar 

  • Chi G-L & Pua E-C (1989) Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Sci. 64: 243-250

    Article  CAS  Google Scholar 

  • Chi G-L, Barfield DG, Sim G-E & Pua E-C (1990) Effect of AgNO3 and aminoethoxyvinylglycine on in vitro shoot and root organogensis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep. 9: 195-198

    Article  CAS  Google Scholar 

  • Christey MC & Earle ED (1991) Regeneration of Brassica oleracea from peduncle explants. HortScience 26: 1069-1072

    Google Scholar 

  • Clare MV & Collin HA (1974) Meristem culture of Brussels sprouts. Hort.Res. 13: 111-118

    Google Scholar 

  • Dash P, Sharma RP & Kumar PA (1995) Shoot regeneration in the genotypes of cauliflower. Cruciferae Newsl. 17: 26-27

    Google Scholar 

  • De Block M, De Brouwer D & Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694-701

    Article  PubMed  CAS  Google Scholar 

  • Delpierre N & Boccon-Gibod J (1992) An extensive hairy root production precedes shoot regeneration in protoplast-derived calli of cauliflower (Brassica oleracea var. botrytis). Plant Cell Rep. 11: 351-354

    Article  Google Scholar 

  • Gamborg OL, Shyluk JP, Brar DS & Constabel F (1977) Morphogenesis and plant regeneration from callus of immature embryos of Sorghum. Plant Sci. Let. 10: 67-74

    Article  CAS  Google Scholar 

  • Heinz DJ & Mee GWP (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci. 9: 346-348

    Article  Google Scholar 

  • Heslop-Harrison J & Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45: 115-120

    PubMed  CAS  Google Scholar 

  • Johnson BB & Mitchell ED (1978) In vitro propagation of broccoli from stem, leaf, and leaf rib explants. HortScience 13: 246-247

    Google Scholar 

  • Kaul ML (1988) Male sterility in higher plants. Monographs on theoretical and applied genetics. Volume 10. Springer-Verlag, Berlin, New York

    Google Scholar 

  • Kumar A, Kumar VA & Kumar J (1993) Rapid in vitro propagation of cauliflower. Plant Sci. 90: 175-178

    Article  Google Scholar 

  • Larkin PJ & Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197-214

    Article  Google Scholar 

  • Margara J (1969) Etude des facteurs de la neoformation de bourgeons en culture in vitro chez le chou-fleur (Brassica oleracea L., var. botrytis). Ann. Physiol. Veg. 11: 95-112

    CAS  Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497

    Article  CAS  Google Scholar 

  • Pow JJ (1969) Clonal propagation in vitro from cauliflower curd. Hort. Res. 9: 151-152

    Google Scholar 

  • Primo-Millo E & Harada H (1975) Morphogenese et propagation vegetativea partir de tissues de feuilles de chou rouge (Brassica 95 oleracea var. Tete de Negre). C. R. Acad. Sci. Paris, Series B. 280: 2845

    Google Scholar 

  • Radke SE, Turner JC & Facciotti D (1992) Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep. 11: 499-505

    Article  Google Scholar 

  • Roy SC (1980) Chromosomal variations in the callus tissues of Allium tuberosum and A.cepa. Protoplasma 102: 171-176

    Article  Google Scholar 

  • Van Wordragen MF & Dons HJM (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol. Biol. Rep. 10: 12-36

    Google Scholar 

  • Vandemoortele JL, Billard JP, Boucaud J & Gaspar T (1993) Effect of osmolarity and medium composition on callogenesis, caulogenesis and rhizogenesis of Brassica oleracea L. var. botrytis hypocotyl fragments. Biol. Plant. 35: 17-24

    Article  CAS  Google Scholar 

  • Walkey DGA & Woolfitt JMG (1970) Rapid clonal multiplication of cauliflower by shake culture. J. Hort. Sci. 45: 205-206

    Google Scholar 

  • Xu H, Knox RB, Taylor PE & Singh MB (1995) BcpI, a gene required for male fertility in Arabidopsis. Proc. Natl. Acad. Sci. USA 92: 2106-2110

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Chauvin JE & Herve Y (1992) A study of factors affecting anther culture of cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss. Org. Cult. 28: 289-296

    Article  Google Scholar 

  • Yang ZN, Xu ZH & Wei ZM (1994) Cauliflower inflorescence protoplast culture and plant regeneration. Plant Cell Tiss. Org. Cult. 36: 191-195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalla, P.L., de Weerd, N. In vitro propagation of cauliflower, Brassica oleracea var. botrytis for hybrid seed production. Plant Cell, Tissue and Organ Culture 56, 89–95 (1999). https://doi.org/10.1023/A:1006221218191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006221218191

Navigation