Skip to main content
Log in

CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric Chemistry

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A Chemical Aqueous Phase Radical Mechanism (CAPRAM) for modelling troposphericmultiphase chemistry is described. CAPRAM contains (1) a detailed treatmentof the oxidation of organic compounds with one and two carbon atoms, (2) anexplicit description of S(IV)-oxidation by radicals and iron(III), as well asby peroxides and ozone, (3) the reactions of OH, NO3,Cl- 2, Br- 2, andCO- 3 radicals, as well as reactions of the transitionmetal ions (TMI) iron, manganese and copper. A modelling study using a simplebox model was performed for three different tropospheric conditions (marine,rural and urban) using CAPRAM coupled to the RADM2-mechanism (Stockwell etal., 1990) for liquid and gas phase chemistry, respectively. In the maincalculations the droplets are assumed as monodispersed with a radius of 1μm and a liquid water content of 0.3 g m-3. In the coupledmechanism the phase transfer of 34 substances is treated by the resistancemodel of Schwartz (1989). Results are presented for the concentration levelsof the radicals in both phases under variation of cloud duration and dropletradius.The effects of the multiphase processes are shown in the loss fluxes of theradicals OH, NO3 and HO2 into the cloud droplets. Fromcalculations under urban conditions considering gas phase chemistry only theOH maximum concentration level is found to be 5.5 · 106cm-3. In the presence of the aqueous phase (r = 1 μm,LWC = 0.3 g m-3) the phase transfer constitutes the most importantsink (58%) reducing the OH level to 1.0 · 106cm-3. The significance of the phase transfer during night time ismore important for the NO3 radical (90%). Its concentrationlevel in the gas phase (1.9 · 109 cm-3) isreduced to 1.4 · 106 cm-3 with liquid waterpresent. In the case of the HO2 radical the phase transfer from thegas phase is nearly the only sink (99.8%). The concentration levelscalculated in the absence and presence of the liquid phase again differ bythree orders of magnitude, 6 · 108 cm-3 and 4.9· 105 cm-3, respectively. Effects of smallerduration of cloud occurrence and of droplet size variation are assessed.Furthermore, in the present study a detailed description of a radicaloxidation chain for sulfur is presented. The most important reaction chain isthe oxidation of (hydrogen) sulphite by OH and the subsequent conversion ofSO- 3 to SO- 5 followed by theinteraction with TMI (notably Fe2+) and chloride to producesulphate. After 36 h of simulation ([H2O2]0= 1 ppb; [SO2]0 = 10 ppb) the direct oxidation pathwayfrom sulfur(IV) by H2O2 and ozone contributes only to8% (2.9 · 10-10 M s-1) of the total lossflux of S(IV) (3.7 · 10-9 M s-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amels, P., Elias, H., Götz, U., Steinges, U., and Wannowius, K. J., 1996: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution, in P. Warneck (ed.), Heterogeneous and Liquid Phase Processes, Vol. 2 of Transport and Chemical Transformation in Pollutants in the Troposphere, (P. Borell, P. M. Borrell, T. Cvit?s, K. Kelly, and W. Seiler, Series Editors), Springer, Berlin, pp. 77-88.

    Google Scholar 

  • Audiffren, N., Renard, M., Buisson, E., and Chaumerliac, N., 1998: Deviations from the Henry's law equilibrium during cloud events: A numerical approach of the mass transfer between phases and its specific numerical effects, Atmos. Res. 49, 139-161.

    Google Scholar 

  • Baral, S., Lume-Pereira, C., Janata, E., and Henglein, A., 1986: Chemistry of colloidal manganese oxides. 3. Formation in the reaction of hydroxyl radical with Mn2+ ions, J. Phys. Chem. 90, 6025-6028.

    Google Scholar 

  • Barker, G. C., Fowles, P., and Stringer, B., 1970: Pulse radiolytic inducted transient electrical conductance in liquid solutions of NO -3 , NO -2 and Fe(CN) 3-6 , Trans. Faraday Soc. 66, 1509-1519.

    Google Scholar 

  • Barlow, S., Buxton, G. V., Murray, S. A., and Salmon, G. A., 1997: Oxidation of hydroxymethanesulfonate initiated by the hydroxyl radical, in P. M. Borrell, P. Borell, T. Cvitaš, K. Kelly, and W. Seiler (eds), Transport and Transformation of Pollutants in the Troposphere, Vol. 1, Proceedings of EUROTRAC Symposium '96: Computational Mechanics Publications, Southampton, U.K., pp. 361-365.

  • Baxendale, J. H., Ward, M. D., and Wardman, P., 1971: Heats of formation of HO2 and OH in aqueous solution, Trans. Faraday Soc. 67, 2532-2537.

    Google Scholar 

  • Beckwith, R. C., Wang, T. X., and Margerum, D. W., 1996: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem. 35, 995-1000.

    Google Scholar 

  • Beilke, S. and Gravenhorst, G., 1978: Heterogeneous SO2-oxidation in the droplet phase, Atmos. Environ. 12, 231-239.

    Google Scholar 

  • Bell, R. P., 1966: The reversible hydration of carbonyl compounds, Adv. Phys. Org. Chem. 4, 1-29.

    Google Scholar 

  • Bell, R. P. and Evans, P. G., 1966: Kinetics of the dehydration of methylene glycol in aqueous solution, Proc. R. Soc. London A 291, 297-323.

    Google Scholar 

  • Bell, R. P., Rand, M. H., and Wynne-Jones, K. M. A., 1956: Kinetics of the hydration of acetaldehyde, Trans. Faraday Soc. 52, 1093-1102.

    Google Scholar 

  • Benkelberg, H.-J., Schäfer, A., and Warneck, P., 1991: In K.-H. Becker (ed.), Air Pollution Research Report 33: Atmospheric Oxidation Processes, CEC, Brussels, pp. 130-133.

    Google Scholar 

  • Benkelberg, H.-J. and Warneck, P., 1995: Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of OH and SO -4 quantum yields, J. Phys. Chem. 99, 5214-5221.

    Google Scholar 

  • Berdnikov, V. M., 1973: Catalytic activity of the hydrated copper ion in the decomposition of hydrogen peroxide, Russ. J. Phys. Chem. 47, 1060-1062.

    Google Scholar 

  • Betterton, E. A., 1992: Henry's law constants of soluble and moderately soluble organic gases: Effects on aqueous phase chemistry, in J. O. Nriagu (ed.), Gaseous Pollutants: Characterization and Cycling, Wiley, New York, pp. 1-50.

    Google Scholar 

  • Betterton, E. A. and Hoffmann, M. R., 1988a: Henry's law constants of some environmentally important ldehydes, Environ. Sci. Technol. 22, 1415-1418.

    Google Scholar 

  • Betterton, E. A. and Hoffmann, M. R., 1988b: Oxodation of aqueous SO2 by peroxymonosulfate, J. Phys. Chem. 92, 5962-5965.

    Google Scholar 

  • Betterton, E. A., Erel, Y., and Hoffmann, M. R., 1988: Aldehyde-bisulfite adducts: Prediction of some of their thermodynamic and kinetic properties, Environ. Sci. Technol. 22, 92-99.

    Google Scholar 

  • Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B., 1985: Reactivity of HO2/O ?2 radicals in aqueous solution, J. Phys. Chem. Ref. Data 14, 1041-1100.

    Google Scholar 

  • Bongartz, A., Schweighoefer, S., Roose, C., and Schurath, U., 1995: The mass accommodation coefficient of ammonia on water, J. Atm. Chem. 20, 35-58.

    Google Scholar 

  • Bothe, E., Schuchmann, M. N., Schulte-Frohlinde, D., and von Sonntag, C., 1983: Hydroxyl radicalinduced oxidation of ethanol in oxygenated aqueous solutions. A pulse radiolysis and product study, Z. Naturforsch. 38b, 212-219.

    Google Scholar 

  • Brandt, C. and van Eldik, R., 1995: Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric relevant processes and mechanisms, Chem. Rev. 95, 119-190.

    Google Scholar 

  • Buxton, G. V., 1994: Mechanisms for chemical reactions in cloud droplets, in P. M. Borrell, P. Borrell, T. Cvitaš, and W. Seiler (eds), Transport and Transformation of Pollutants in the Troposphere, Proceedings of EUROTRAC Symposium '94: SPB Academic Publishing, The Hague, The Netherlands, pp. 978-983.

    Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., 1988a: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals, (OH, O -2 ) in aqueous solution, J. Phys. Chem. Ref. Data 17, 513-886.

    Google Scholar 

  • Buxton, G. V., Wood, N. D., and Dyster, S., 1988b: Ionisation constants of OH and HO2 in aqueous solution up to 200 °C. A pulse radiolytic study, J. Chem. Soc. Faraday Trans. 84, 1113-1121.

    Google Scholar 

  • Buxton, G. V., Salmon, G. A., and Wood, N. D., 1990: A pulse radiolysis study of the chemistry of oxysulfur radicals in aqueous solution, in G. restelli and G. Angeletti (eds), Proceedings of the Fifth European Symposium: Physico-Chemical Behaviour of Atmospheric Pullutants, Kluwer, Dordrecht, pp. 245-250.

    Google Scholar 

  • Boxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D., 1996a: A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S (IV): A pulse and gamma-radiolysis study, Atmos. Environ. 30, 2483-2493.

    Google Scholar 

  • Boxton, G. V., Malone, T. N., and Salmon, G. A., 1996b, Pulse radiolysis study of the reaction of SO -5 with HO2, J. Chem. Soc. Faraday Trans. 92, 1287-1289.

    Google Scholar 

  • Buxton, G. V., Malone, T. N., and Salmon, A., 1997: Reaction of SO -4 with Fe2+, Mn2+ and Cu+ in aqueous solution, J. Chem. Soc. Faraday Trans. 93 (16), 2893-2897.

    Google Scholar 

  • Cabelli, D. E., Bielski, B. H. J., and Holcman, J., 1987: Interaction between copper(II)-arginine complexes and HO2/O -2 -radicals, a pulse radiolytic study, J. Am. Chem. Soc. 109, 3665-3669.

    Google Scholar 

  • Chameides, W. L., 1984: The photochemistry of a Remote Marine Straaatiform Cloud, J. Geophys. Res. 89, 4739-4755.

    Google Scholar 

  • Chawla, O. P. and Fessenden, R. W., 1975: Electron spin resonance and pulse radiolysis studies of some reactions of SO -4 , J. Phys. Chem. 79, 2693-2700.

    Google Scholar 

  • Chin, M. and Wine, P. H., 1994: A temperature-dependent competitive kinetics study of the aqueousphase reactions of OH radicals with formate, formic acid, acetate, acetic acid and hydrated formaldehyde, in G. R. Helz, R. G. Zepp, and D. G. Crosby (eds), Aquatic and Surface Photochemistry, Lewis Publishers, Boca Raton, pp. 85-96.

    Google Scholar 

  • Christensen, H. and Sehested, K., 1981: Pulse radiolysis at high temperatures and high pressures, Radiat. Phys. Chem. 18, 723-231.

    Google Scholar 

  • Christensen, H., Sehested, K., and Corfitzen, H., 1982: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem. 86, 1588-1590.

    Google Scholar 

  • Christensen, H., ehested, K., and Bjergbakke, E., 1989: Radiolysis of reactor water: Reaction of hydroxyl radicals with superoxide (O -2 ), Water Chem. Nucl. React. Syst. 5, 141-144.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1990: Solubility of volatile electolytes in multicomponent solutions with atmospheric applications, ACS Symposium Series 416, 58-73.

    Google Scholar 

  • Clifton, C. L. and Huie, R. E., 1989: Rate constants for hydrogen abstraction reactions of the sulfate radical SO -4 alcohols, Int. J. Chem. Kinet. 21, 677-687.

    Google Scholar 

  • Cope, V. W., Hoffman, M. Z., and Chen, S., 1978: Reactivity of the carbonate radical toward metal complexes in aqueous solution, J. Phys. Chem. 82, 2665-2669.

    Google Scholar 

  • Damschen, D. E. and Martin, L. R., 1983: Aqueous aerosol oxidation of nitrous acid by O2, O3 and H2O2, Atmos. Environ. 17, 2005-2011.

    Google Scholar 

  • Davidovits, M., Hu, J. H., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1995: Entry of gas molecules into liquids, Faraday Discuss. 100, 65-82.

    Google Scholar 

  • Davies, G., Kirschenbaum, L. J., and Kustin, K., 1968: The kinetics and stoichometry of the reaction between manganese(III) and hydrogen peroxide in acid perchlorate solution, Inorg. Chem. 7, 146-154.

    Google Scholar 

  • Deister, U. and Warneck, P., 1990: Photooxidation of SO 2-3 in aqueous solution, J. Phys. Chem. 94, 2191-2198.

    Google Scholar 

  • Dentener, F. J. and Crutzen, P. J., 1993: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3 and OH, J. Geophys. Res. 98, 7149-7163.

    Google Scholar 

  • Diebler, H. and Sutin, N., 1964: The kinetics of some oxidation-reduction reactions involving manganese(III), J. Phys. Chem. 68, 174-180.

    Google Scholar 

  • Draganic, Z. D., Negron-Mendoza, A., Sehested, K., Vujosevic, S. I., Navarro-Gonzales, R., Albarran-Sanchez, M. G., and Draganic, I. G., 1991: Radiolysis of aqueous solution of ammonium bicarbonate over a large dose range, Radiat. Phys. Chem. 38, 317-321.

    Google Scholar 

  • Elliot, A. J., 1989: A pulse radiolysis study of the temperature dependence of reactions involving H, OH and e -aq in aqueous solution, Radiat. Phys. Chem. 34, 753-758.

    Google Scholar 

  • Elliot, A. J. and Buxton, G. V., 1992: Temperature dependence of the reactions OH + O -2 and OH + HO 2 in water up to 200 °C, J. Chem. Soc. Faraday Trans. 88, 2465-2470.

    Google Scholar 

  • Elliot, A. J. and McCracken, D. R., 1989: Effect of temperature on O? reactions and equilibria: A pulse radiolytic study, Radiat. Phys. Chem. 33, 69-74.

    Google Scholar 

  • Elliot, A. J. and Simsons, A. S., 1984: Rate constants for reactions of hydroxyl radicals as a function of temperature, Radiat. Phys. Chem. 24, 229-231.

    Google Scholar 

  • Eriksen, T. E., Lind, J., and Merenyi, G., 1985: On the acid-base equilibrium of the carbonate radical, Radiat. Phys. Chem., 26, 197-199.

    Google Scholar 

  • Exner, M., 1990: Diploma Thesis, Bildung und Reaktionen von Radikalen und Radikalanionen in wäßriger Phase, Georg-August-University Göttingen.

    Google Scholar 

  • Exner, M., 1992: PhD Thesis, Laserspektrometrische Untersuchungen von Reaktionen des NO3-Radikals in wäßriger Lösung, Georg-August-University Göttingen.

    Google Scholar 

  • Exner, M., Herrmann, H., and Zellner, R., 1990: A laser photolysis study of reactions of the carbonate radical anion (CO -3 in aqueous solution, in K. H. Becker (ed.), Air Pollution Research Report 33: Atmospheric Oxidation Processes, Office for official Publications of the European Communities, Luxembourg, pp. 134-138.

    Google Scholar 

  • Exner, M., Herrmann, H., and Zellner, R., 1992: Laser-based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem. 96, 470-477.

    Google Scholar 

  • Exner, M., Herrmann, H., Michel, J. W., and Zellner, R., 1993: Laser pulse initiated measurements of NO3 reactions with S(IV) and organic compounds in aqueous solutions, in P. M. Borrell, P. Borrell, T. Cvitaš, and W. Seiler (eds), Photo-oxidants: Precursors and Products, Proceedings of EUROTRAC Symposium '92, SPB Academic Publishing, The Hague, The Netherlands, pp. 615-618.

    Google Scholar 

  • Exner, M., Herrmann, H., and Zellner, R., 1994: Rate constants for the reactions of the NO3 radical with HCOOH/HCOO? and CH3COOH/CH3COO? in aqueous solution between 278 and 328 K, J. Atmos. Chem. 18, 359-378.

    Google Scholar 

  • Fisher, M. M. and Hamill, W. H., 1973: Electronic processes in pulse-irradiated aqueous and alcoholic systems, J. Phys. Chem. 77, 171-177.

    Google Scholar 

  • Fornier de Violet, Ph., 1981: Polyhalide anions as intermediates in chemistry, Rev. Chem. Intermed. 4, 121-169.

    Google Scholar 

  • Fuller, E. N., Diffusion coefficients for binary gas systems at low pressures: Empirical correlations, in C. Reid et al. (eds), Properties of Gases and Liquids, Mc Graw Hill, New York, p. 587.

  • Gardner, J. A., Watson, L. R., Adewuyi, Y. G., Davidovits, P., Zahniser, M. S., Worsnop, D. R., and Kolb, C. E., 1987: Measurement of the mass accommodation coefficient of SO2(g) on water droplets, J. Geophys. Res. 92, 10887-10895.

    Google Scholar 

  • George, C., Ponche, J. L., Mirabel, Ph., Behnke, W., Scheer, V., and Zetzsch, C., 1994: Study of the uptake of N2O5 by water and NaCl solutions, J. Phys. Chem. 98, 8780-8784.

    Google Scholar 

  • Gilbert, B. C., Larkin, J. P., and Norman, R. O. C., 1972: Electron spin resonance studies, part XXXIV. The use of the aci-anion from nitromethane as a spin trap for organic radicals in aqueous solution, J. Chem. soc. Perkin Trans. II, 1272-1279.

  • Goldstein, S., Czapski, G., Cohen, H., and Meyerstein, D., 1992: Deamination of ?-alanine induced by hydroxyl radicals and monovalent copper ions. A pulse radiolytic study, Inorg. Chim. Acta 192, 87-93.

    Google Scholar 

  • Graedel, T. E. and Weschler, C. J., 1981: Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space Phys. 19, 505-539.

    Google Scholar 

  • Graedel, T. E., Mandich, M. L., and Weschler, C. J., 1986: Kinetic model studies of atmospheric droplet chemistry 2. Homogeneous transition metal chemistry in raindrops, J. Geophys. Res. 91, 5205-5221.

    Google Scholar 

  • Grigor'ev, A. E., Makarov, I. E., and Pikaev, A. K., 1987: Formation of Cl -2 in the bulk solution during the radiolysis of concentrated aqueous solutions of chlorides, High Energy Chem. 21, 99-102.

    Google Scholar 

  • Hanson, D., 1992: Measurement of OH and HO2 radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem. 96, 4979.

    Google Scholar 

  • Harned, H. S. and Owen, B. B., 1958: The Physical Chemistry of Electrolytic Solutions, 3rd edn, Reinhold, New York.

    Google Scholar 

  • Hart, E. J., Thomas, J. K., and Gordon, S., 1964: A review of the radiation chemistry of single-carbon compounds and some reactions of the hydrated electron in aqueous solution, Radiat. Res. Suppl. 4, 74-88.

    Google Scholar 

  • Hemmes, P., Rich, L. D., Cole, D. L., and Eyring, E. M., 1971: Kinetics of hydrolysis of ferric ion in dilute aqueous solution, J. Phys. Chem. 75, 929-932.

    Google Scholar 

  • Herrmann, H., Exner, M. and Zellner, R., 1994: Reactivity trends in reactions of the nitrate radical (NO3) with inorganic and organic cloudwater constituents, Geochim. Cosmochim. Acta 58, 3239-3244.

    Google Scholar 

  • Herrmann, H., Reese, A., and Zellner, R., 1995: Time-resolved UV/VIS diode array absorption spectroscopy of SO -x (x = 3, 4, 5) radical anions in aqueous solution, J. Mol. Struct. 348, 183-186.

    Google Scholar 

  • Herrmann, H., Jacobi, H.-W., Raabe, G., Reese, A., and Zellner, R., 1996: Laser-spectrocopic laborabory studies of atmospheric aqueous phase free radical chemistry, Fresenius J. Anal. Chem. 355, 343-344.

    Google Scholar 

  • Herrmann, H., Jacobi, H.-W., Reese, A., and Zellner, R., 1997: Laboratory studies of small radicals and radical anions of interest for tropospheric aqueous phase chemistry: The reactivity of SO -4 , in P. M. Borrell, T. Cvitaš, K. Kelly, and W. Seiler (eds), Transport and Transformation of Pollutants in the Troposphere, Vol. 1, Proceedings of EUROTRAC Symposium '96, Computational Mechanics Publications, Southampton, U.K., pp. 407-411.

    Google Scholar 

  • Herrmann, H. and Zellner, R., 1998: Reactions of NO3 radicals in aqueous solution, in Z. B. Alfassi, N-Centered Radicals, John Wiley and Sons Ltd.

  • Herrmann, H., Ervens, B., Nowacki, P., Wolke, R., and Zellner, R., 1999a: A chemical aqueous phase radical mechanism for tropospheric chemistry, Chemosphere 38, 1223-1232.

    Google Scholar 

  • Herrmann, H., Reese, A., Ervens, B., Wicktor, F., and Zellner, R., 199b: Laboratory and modelling studies of tropospheric multiphase conversions involving some C1 and C2 peroxyl radicals, Phys. Chem. Earth 24, 287-290.

  • Hindmarsh, A. C., 1980: LSODE and LSODI, two initial value ordinary differential equation solver, ACM-SIGNUM Newsl. 15, 10-11.

    Google Scholar 

  • Hoffmann, M. R., 1986: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ. 20, 1145-1154.

    Google Scholar 

  • Hoigné, J., Bader, H., Haag, W. R., and Staehelin, J., 1985: Rate constants of reactions of ozone with organic and inorganic compounds in water-III inorganic compounds and radicals, Water Res. 19, 993-1004.

    Google Scholar 

  • Holdren, M. W., Spicer, C. W., and Hales, J. M., 1984: Peroxyacetyl nitrate solubility and decomposition rate in acidic water, Atmos. Environ. 18, 1171-1173.

    Google Scholar 

  • Huie, R. E. and Clifton, C. L., 1990: Temperature dependence of the rate constants for reactions of the sulfate radical, SO -4 , with anions, J. Phys. Chem. 94, 8561-8567.

    Google Scholar 

  • Huie, R. E., Shoute, L. C. T., and Neta, P., 1991a: Temperature dependence of the rate constants for reactions of the carbonate with organic and inorganic reductants, Int. J. Chem. Kin. 23, 541-542.

    Google Scholar 

  • Huie, R. E., Clifton, C. L., and Neta, P., 1991b: Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions, Radiat. Phys. Chem. 38, 477-481.

    Google Scholar 

  • Jacob, D. J., 1986: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91, 9807-9826.

    Google Scholar 

  • Jacob, D. J., Gottlieb, E.W., and Prather, M. J., 1989: Chemistry of a polluted cloud boundary layer, J. Geophys. Res. 94, 12975-13002.

    Google Scholar 

  • Jacobi, H.-W., 1996: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wäßriger Phase, PhD Thesis, University-GH-Essen, Germany.

    Google Scholar 

  • Jacobi, H.-W., Herrmann, H., and Zellner, R., 1996: Kinetic investigation of the Cl -2 radical in the aqueous phase, in Ph. Mirabel (ed.), Air Pollution Research Report 57: Homogenous and Heterogenous Chemical Processes in the Troposphere, Office for Official Publications of the European Communities, Luxembourg, pp. 172-176.

    Google Scholar 

  • Jacobi, H.-W., Herrmann, H., and Zellner, R., 1997: A laser flash photolysis study of the decay of Cl-atoms and Cl -2 -radical anions in aqueous solution at 298 K, Ber. Bunsenges. Phys. Chem. 101, 1909-1913.

    Google Scholar 

  • Jacobi, H.-W., Wicktor, F., Herrmann, H., and Zellner, R., 1999: A laser flash photolysis kinetic study of the Cl ?2 -radical anion with oxygenated hydrocarbons in aqueous solution, Int. J. Chem. Kin. 31, 169-181.

    Google Scholar 

  • Jayson, G. G., Parson, B. J., and Swallow, A. J., 1973a: Same simple, highly reactive, inorganic chlorine derivatives in aqueous solution, J. Chem. Soc. Faraday Trans. 69, 1597-1607.

    Google Scholar 

  • Jayson, G. G., Parson, B. J., and Swallow, A. J., 1973b, Oxidation of ferrous ions by per hydroxyl radicals, J. Chem. Soc. Faraday Trans. 69, 236-242.

    Google Scholar 

  • Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigure, K., and Yoshida, Y., 1992: Pulse radiolysis study of concentrated sulfuric acid solutions, Chem. Soc. Faraday Trans. 88, 1653-1658.

    Google Scholar 

  • Khan, I. and Brimblecombe, P., 1992: Henry's law constants of low molecular weight (< 130) organic acids, J. Aerosol Sci. 23 (Suppl. 1), S897-S900.

    Google Scholar 

  • Kirchner, W., Welter, F., Bongartz, A., Kames, J., Schweighoefer, S., and Schurath, U., 1990: Trace gas exchange at the air/water interface: Measurements of mass accommodation coefficients, J. Atmos. Chem. 10, 427-449.

    Google Scholar 

  • Kläning, U. K. and Wolff, T., 1985: Laser flash photolysis of HClO, ClO?, HBrO and BrO? in aqueous solution, reactions of Cl-and Br-atoms, Ber. Bunsenges. Phys. Chem. 89, 243-245.

    Google Scholar 

  • Kläning, U. K., Sehested, K., and Holcman, J., 1985: Standard gibbs free energy of formation of the hydroxyl radical in aqueous solution; rate constants for the reaction ClO -2 + O3 ⇄ O -3 + ClO2, J. Phys. Chem. 89, 760-763.

    Google Scholar 

  • Kok, G. L., Gitlin, S. N., and Lazrus, A. L., 1986: Kinetics of the formation and decomposition of hydroxymethanesulfonate, J. Geophys. Res. 91, 2801-2804.

    Google Scholar 

  • Kosak-Channing, L. E. and Helz, G. R., 1983: Solubility of ozone in aqueous solutions of 0-0.6 M Ionic Strength at 5-30 °C, Environ. Sci. Technol. 17, 145-149.

    Google Scholar 

  • Kozlov, Y. N. and Berdnikov, V. M., 1973: Photodecomposition of hydogen peroxide in the presence of copper ions. IV. Determinations of rate constants of elementary reactions, Russ. J. Phys. Chem. 47, 338-340.

    Google Scholar 

  • Kuz'min, V. A., 1972: Reactions of the CO -3 and SiO -3 radical anions, High Energy Chem. 6, 338-339.

    Google Scholar 

  • Lammel, G., Perner, D., and Warneck, P., 1990: Decomposition of pernitric acid in aqueous solution, J. Phys. Chem. 94, 6141-6144.

    Google Scholar 

  • Laurence, G. S. and Thornton, A. T., 1973: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part III, the oxidation of manganese(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc. Dalton Trans., 1637-1644.

  • Leibrock, E. and Slemr, J., 1996: Determination of oxygenated hydrocarbons in air by GC/MS, in P. M. Borrell, P. Borrell, Y. Cvitaš, K. Kelly, and W. Seiler (eds), Transport and Transformation of Pollutants in the Troposphere, Vol. 1, Proceedings of EUROTRAC Symposium '96, Computational Mechanics Publications, Southampton, U.K., pp. 377-381.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1990: Influences of cloud photochemical processes on tropospheric ozone, Nature, 343, 227-233.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1991: The role of clouds in tropospheric photochemistry, J. Atmos. Chem. 12, 229-268.

    Google Scholar 

  • Lind, J. A., Lazrus, A. L., and Kok, G. L., 1987, Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide and peroxyacetic acid, J. Geophys. Res. 92, 4171-4177.

    Google Scholar 

  • Lind, J. A. and Kok, G. L., 1994: Correction to ‘Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide and peroxyacetic acid', J. Geophys. Res. 99, 21119.

    Google Scholar 

  • Logager, T., Sehested, K., and Holcman, J., 1993: Rate constants of the equilibrium reactions SO ▪-4 + HNO3 ⇄ HSO -4 + NO ▪-3 and SO ▪-4 + NO -3 ⇄ SO 2-4 + NO ▪-3 , Radiat. Phys. Chem. 41, 539-543.

    Google Scholar 

  • Loomis, A. G., 1928: International Critical Tables Vol. III: Solubilities of Gases in Water, McGraw-Hill, New York, pp. 255-261.

    Google Scholar 

  • Mackay, D. and Shiu, W. Y., 1981: A critical review of Henry's law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data 10, 1175-1199.

    Google Scholar 

  • Marsh, A. R. W. and McElroy, W. J., 1985: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ. 19, 1075-1080.

    Google Scholar 

  • Maruthamuthu, P. and Neta, P., 1977: Radiolytic chain decomposition of peroxomonophosphoric and peroxomonosulphuric acids, J. Phys. Chem. 81, 937-940.

    Google Scholar 

  • Matthijsen, J., Builtjes, P. J. H., and Sedlak, D. H., 1995: Cloud model experiments of the effect of iron and copper on tropospheric ozone under marine and continental conditions, Meteorol. Atmos. Phys. 57, 43-60.

    Google Scholar 

  • McElroy, W. J. and Waygood, S. J., 1990: Kinetics of the reactions of the SO -4 Radical with SO -4 , S2O2 2-8 , H2O and Fe2+, J. Chem. Soc. Faraday Trans. 86, 2557-2564.

    Google Scholar 

  • McElroy, W. J., 1997: The interactions of gases with aqueous aerosol particles, central Electr. Gen. Board, Part IV.

  • Merényi G. and Lind, J., 1994: Reaction mechanism of hydrogen abstraction by the bromine atom in water, J. Am. Chem. Soc. 116, 7872-7876.

    Google Scholar 

  • Mirabel, P., 1996: Investigations of the uptake rate of some atmospheric trace gases, RINOXA Final Report.

  • Möller, D. and Mauersberger, G., 1992: Cloud chemistry effects on tropospheric photo-oxidants in polluted atmosphere-model results, J. Atmos. Chem. 14, 153-165.

    Google Scholar 

  • Möller, D. and Mauersberger, G., 1995: Aqueous phase chemical reaction system used in cloud chemistry modelling, in A. Flossmann, T. Cvitaš, D. Möller, and G. Mauersberger (eds), Clouds: Models and Mechanisms, ISS, Garmisch-Partenkirchen, Germany, pp. 77-93.

    Google Scholar 

  • National Bureau of Standards, 1971: JANAF thermodynamic tables, 2nd edn, NSDRS-NBS 37, U.S. Dept. of Commerce, Washington, D.C.

    Google Scholar 

  • Neta, P. and Huie, R. E., 1986: Rate constants for reactions of NO3 radicals in aqueous solution, J. Phys. Chem. 90, 4644-4648.

    Google Scholar 

  • Norman, R. O. C., Storey, P. M., and West, P. R., 1970: Electron spin resonance studies. Part XXV. Reactions of the sulphate radical anion with organic compounds, J. Chem. Soc. B., 1087-1095.

  • Nowacki, P., 1998: Modeling of size-resolved multi-phase chemical processes in clouds under polluted atmospheric conditions, PhD Thesis in preparation, BTU Cottbus.

    Google Scholar 

  • Olson, T. M. and Hoffmann, M. R., 1989: Hydroxyalkylsulfonate formation: Its role as a S(IV) reservoir in atmospheric water droplets, Atmos. Environ. 23, 985-997.

    Google Scholar 

  • O'Sullivan, D. W., Lee, M., Noone, B. C., and Heikes, B. G., 1996: Henry's law constant determinations for hydrogen peroxide, ethyl hydroperoxide and peroxyacetic acid, J. Phys. Chem. 100, 3241-3247.

    Google Scholar 

  • Park, J.-Y. and Lee, Y. N., 1988: Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem. 92, 6294-6302.

    Google Scholar 

  • Pick-Kaplan, M. and Rabani, J., 1976: Pulse radiolytic studies of aqueous Mn(ClO4)2 solutions, J. Phys. Chem. 80, 1840-1843.

    Google Scholar 

  • von Piechowski, M., Nauser, T., Hoignè, J., and Bühler, R. E., 1993: O -2 Decay catalysed by Cu2+ and Cu+ ions in aqueous solutions: A pulse radiolysis study for atmospheric chemistry, Ber. Bunsenges. Phys. Chem. 97, 762-771.

    Google Scholar 

  • Pikaev, A. K., Sibirskaya, G. K., Shirshov, E. M., Glazunov, P. Y., and Spitsyn, V. I., 1974: Pulsed radiolysis of concentrated aqueous solutions of nitric acid, Dokl. Phys. Chem., Proc. Acad. Sci. U.S.S.R., 215, 328-331.

    Google Scholar 

  • Ponche, J. L., George, C., and Mirabel, P., 1993: Mass transfer at the air/water interface: Mass accommodation coefficients of SO2, HNO3, NO2, J. Atmos. Chem. 16, 1-21.

    Google Scholar 

  • Raabe, G., 1996: Eine laserphotolytische Studie zur Kinetik der Reaktionen des NO3-Radikals in wäßriger Lösung, Cuvillier, Göttingen, Germany.

    Google Scholar 

  • Rafi, A. and Sutton, H. C., 1965: Radiolysis of aerted solutions of potassium bromide, Trans. Faraday Soc. 61, 877-890.

    Google Scholar 

  • Redlich, O., 1946: The dissociation of strong electrolytes, Chem. Rev. 39, 333-356.

    Google Scholar 

  • Redlich, O. and Hood, G. C., 1957: Ionic interaction, dissociation and molecular structure, Faraday Discuss. 24, 87-93.

    Google Scholar 

  • Reese, A., 1992: Diploma Thesis, Untersuchungen zur Spektroskopie und Kinetik der Radikalanionen SO -x (x =3, 4, 5) in wäßriger Lösung, University Essen, Germany.

    Google Scholar 

  • Reese, A., 1997: PhD Thesis, UV/VIS-spektrometrische und kinetische Untersuchungen von Radikalen und Radikalanionen in wäßriger Lösung, University Essen, Germany.

    Google Scholar 

  • Reese, A., Herrmann, H., and Zellner, R., 1997: Kinetics and spectroscopy of organic peroxyl radicals (RO2) in aqueous solution, in P. M. Borrell, P. Borrell, T. Cvitaš, K. Kelly, and W. Seiler (eds), Transport and Transformation of Pollutants in the Troposphere, Vol. 1, Proceedings of EUROTRAC Symposium '96, Computational Mechanics Publications, Southhampton, U.K., pp. 377-381.

    Google Scholar 

  • Reese, A., Herrmann, H., and Zellner, R., 1999: Kinetic and spectroscopic investigations of the Br -2 radical in aqueous solution, in P. M. Borrell and P. Borrell (eds), Proceedings of the EUROTRAC-2 '98 Symposium, WIT Press, Southampton, pp. 714-718.

    Google Scholar 

  • Rettich, T. R., 1978: Some photochemical reactions of aqueous nitric acid, Diss. Abstr. Int. B 38, 5968.

    Google Scholar 

  • Röth, E.-P., 1992: A fast algorithm to calculate the photonflux in optically dense media for use in photochemical models, Ber. Bunsenges. Phys. Chem. 96, 417-420.

    Google Scholar 

  • Rohrer, F. and Brüning, D., 1992: Surface NO and NO2 mixing ratios measured between 30°N and 30°S in the Atlantic region, J. Atmos. Chem. 15, 253-267.

    Google Scholar 

  • Rudich, Y., Talukdar, R. K., Ravishankara, A. R., and Fox, R. W., 1996: Reactive uptake of NO3 on pure water and ionic solutions, J. Geophys. Res. 101, 21023-21031.

    Google Scholar 

  • Ruggaber, A., Dlugi, R., Bott, A., Forkel, R., Herrmann, H., and Jacobi, H.-W., 1997: Modelling of radiation quantities and photolysis frequencies in the aqueous phase in the troposhere, Atmos. Environ. 31, 3137-3150.

    Google Scholar 

  • Rush, J. D. and Bielski, B. H. J., 1985: Pulse radiolytic studies of the reactions of HO2/O ?2 with Fe(II)/FE(III) ions. The reactivity of HO2/O ?2 with ferric ions and its implication on the occurrence of the Haber-Weiss-reaction 89, 5062-5066.

    Google Scholar 

  • Sander, R. and Crutzen, P. J., 1996: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res. 101, 9121-9138.

    Google Scholar 

  • Saxena, P. and Hildemann, L. M., 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57-109.

    Google Scholar 

  • Schuchmann, M. N. and von Sonntag, C., 1988: The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution, J. Am. Soc. 110, 5698-5701.

    Google Scholar 

  • Schwartz, S. E., 1986: Mass transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds, in W. Jaeschke (ed.), Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. 6, Springer, Berlin, pp. 415-471.

    Google Scholar 

  • Schwartz, S. E. and White, W. H., 1983: Kinetics of reactive dissolution of nitrogen oxides into aqueous solution, Adv. Environ. Sci. Technol. 12, 1-115.

    Google Scholar 

  • Schwarz, H. A. and Bielski, B. H. J., 1986: Reactions of HO2 and O -2 with iodine and bromine and the I -2 and I atom reduction potentials, J. Phys. Chem. 90, 1445-1448.

    Google Scholar 

  • Schweitzer, F., Magi, L., George, C., and Mirabel, P., 1998: Uptake rate measurements of methanesulfonic acid and glyoxal by aqueous droplets, J. Phys. Chem. 102, 593-600.

    Google Scholar 

  • Sedlak, D. L. and Hoigné, J., 1993: The role of copper and oxalate in the redox cycling of iron in atmospheric waters, Atmos. Environ. 27A, 2173-2185.

    Google Scholar 

  • Sehested, K., Holcman, J., and Hart, T. J., 1983: J. Phys. Chem. 87, 1951-1954.

    Google Scholar 

  • Sehested, K., Logager, T., Holcman, J., and Nielsen, O. J., 1994: Formation and reactions of the NO3 radical in aqueous solution, in P. M. Borrell, P. Borrell, T. Cvitaš, and W. Seiler (eds), Transport and Transformation of Pollutants in the Troposphere, Proceedings of EUROTRAC Symposium '94, SPB Academic Publishing, The Hague, The Netherlands, pp. 999-1004.

    Google Scholar 

  • Shoute, L. C. T., Alfassi, Z. B., Neta, P., and Huie, R. E., 1991: Temperature Dependence of the rate constants for reaction of dihalide and azide radicals with inorganic reductances, J. Phys. Chem. 95, 3238-3242.

    Google Scholar 

  • Sirs, J. A., 1958, Electronic stopped flow measurements of rapid reactions in solution. Part 2. Glass electrode pH measurements, Trans. Faraday Soc. 54, 207-212.

    Google Scholar 

  • von Sonntag, C., 1987: The Chemical Basis of Radiation Biology, Taylor & Francis.

  • Stanbury, D. M., 1989, Reduction potentials involving inorganic free radicals in aqueous solution, Adv. Inorg. Chem. 33, 69-138.

    Google Scholar 

  • Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X., 1990: The second generation regional acid deposition model. Chemical mechanism for regional air quality modeling, J. Geophys. Res. 95, 16343-16367.

    Google Scholar 

  • Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S., 1997: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res. 102 (D22), 25847-25879.

    Google Scholar 

  • Tang, Y., Thorn, R. P., Mauldin III, R. L., and Wine, P. H., 1988: Kinetics and spectroscopy of the SO -4 radical in aqueous solution, J. Photochem. Photobiol. A 44, 243-258.

    Google Scholar 

  • Thomas, J. K., 1965: Rates of reaction of the hydroxyl radical, Trans. Faraday Soc. 61, 702-707.

    Google Scholar 

  • Thomas, K., Volz-Thomas, A., Mihelcic, D., Smit, H. G. J., and Kley D., 1998: On the exchange of NO3 radicals with aqueous solutions: Solubility and sticking coefficient, J. Atmos. Chem. 29, 17-43.

    Google Scholar 

  • Thornton, A. T. and Laurence, G. S., 1973: Kinetics of oxidation of transition-metal ions by halogen radical anions. I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc. Dalton Trans., 804-813.

  • Wagner, I. and Strehlow, H., 1987: On the flash photolysis of bromide ions in aqueous solution, Ber. Bunsenges. Phys. Chem. 91, 1317-1321.

    Google Scholar 

  • Wagner, I., Strehlow, H., and Busse, G., 1980: Flash photolysis of nitrate ions in aqueous solution, Z. Phys. Chem 123, 1-33.

    Google Scholar 

  • Walling, C. and Goosen, A., 1973: Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates, J. Am. Chem. Soc. 95 (9), 2987-2991.

    Google Scholar 

  • Walling, C., 1975: Fenton's reagent revisited, Acc. Chem. Res. 8, 125-131.

    Google Scholar 

  • Walcek, C. J., Yuan, H. H., and Stockwell, W. R., 1997: The influence of aqueous-phase chemical reactions on ozone formation in polluted and nonpolluted clouds, Atmos. Environ. 31 (8), 1221-1237.

    Google Scholar 

  • Wang, T. X. and Margerum, D. W., 1994: Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/base-assisted mechanisms, Inorg. Chem. 33, 1050-1055.

    Google Scholar 

  • Warneck, P. (ed)., 1996: Heterogeneous and Liquid-Phase Processes, Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Warneck, P. and Wurzinger, C., 1988: Product quantum yields for the 305 nm photodecomposition of NO -3 in aqueous solution, J. Phys. Chem. 92, 6278-6283.

    Google Scholar 

  • Weinstein-Lloyd, J. and Schwartz, S. E., 1991: Low-intensity radiolysis study of free-radical reactions in cloudwater: H2O2 production and destruction, Environ. Sci. Technol. 25, 791-800.

    Google Scholar 

  • Welch, M. J., Lifton, J. F., and Seck, J. A., 1969: Tracer studies with radioactive Oxygen-15. Exchange between carbon dioxide and water, J. Phys. Chem. 73, 3351-3356.

    Google Scholar 

  • Weschler, C. J., Mandich, M. L., and Graedel, T. E., 1986: Speciation, photosensitivity and reactions of transition metal ions in atmospheric droplets, J. Geophys. Res. 91, 5189-5204.

    Google Scholar 

  • Wicktor, F., Reese, A., Herrmann, H., and Zellner, R., 1996: Lasergestützte kinetische und spektroskopische Untersuchungen des Br -2 -Radikalanions in wäßriger Lösung, GDCh Umwelt und Chemie, Umwelttagung 1996.

    Google Scholar 

  • Wilhelm, E., Battino, R., and Wilcock, R. J., 1977: Low-pressure solubility of gases in liquid water, Chem. Rev. 77, 219-262.

    Google Scholar 

  • Wolke, R. and Knoth, O., 1966: Numerical solution of air pollution models: Aqueous chemistry, Zeitschrift für Angewandte Mathematik und Mechanik, Special Issues: ICIAM95, Issue 5: Applied Sciences, especially Mechanics, 551-552.

  • Zehavi, D. and Rabani, J., 1972: The oxidation of aqueous bromide ions by hydroxyl radicals. A pulse radiolysis investigation, J. Phys. Chem. 76, 312-319.

    Google Scholar 

  • Zellner, R., Exner, M., and Herrmann, H., 1990: Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range of 278–353 K, J. Atmos. Chem. 10, 411-425.

    Google Scholar 

  • Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G., and Reese, A., 1994: Bildung und Reaktionen von Oxidantien in flüssiger Phase, Final Report, University-GH-Essen, Förderkennzeichen FK 07EU7801.

  • Zellner, R. and Herrmann, H., 1995: Free radical chemistry of the aqueous atmospheric phase, in R. J. H. Clark and R. E. Hester (eds), Advances in Spectroscopy, Spectroscopy in Environmental Science, Wiley, London, Vol. 3, pp. 381-451.

    Google Scholar 

  • Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G., and Reese, A., 1996: Formation and Reactions of Oxidants in the Aqueous Phase, in P. Warneck (ed.), Heterogeneous and Liquid Phase Processes, Springer, Berlin, pp. 146-152.

    Google Scholar 

  • Ziajka, J., Beer, F., and Warneck, P., 1994: Iron-catalysed oxidation of bisulphite aqueous solution: Evidence for a free radical chain mechanism, Atmos. Environ. 28, 2549-2552.

    Google Scholar 

  • Zimmermann, J. and Poppe, D., 1996: A supplement for the RADM2 chemical mechanism: The photooxidation of isoprene,Atmos. Environ. 30, 1255-1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, H., Ervens, B., Jacobi, HW. et al. CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric Chemistry. Journal of Atmospheric Chemistry 36, 231–284 (2000). https://doi.org/10.1023/A:1006318622743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006318622743

Navigation