Skip to main content
Log in

Differences in shoot regeneration response from cotyledonary node explants in Asiatic Vigna species support genomic grouping within subgenus Ceratotropis (Piper) Verdc.

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The efficiency of any plant regeneration system lies in part in its wide applicability to diverse genotypes. In Asiatic Vigna, cotyledon and cotyledonary node explants from 4-day-old seedlings of 27 genotypes were cultured in a medium consisting of MS salts, B5 vitamins, 3.0% sucrose and 1.0 mg l-1 BA. Direct and efficient multiple shoot regeneration (80–100%) from the cotyledonary nodes was obtained in all epigeal species namely radiata, mungo, aconitifolia, subspecies radiata var. sublobata, mungo var. silvestris and in the hypogeal but allotetraploid glabrescens. In contrast, two other hypogeal species V. angularis and V. umbellata failed to initiate shoots from the nodes. However, adventititious shoots developed at the basipetal cut (hypocotyl) in 35–67% of V. angularis explants. These results provide evidence in support of the existing genomic grouping within subgenus Ceratotropis, which designates AA, A1A1 and A1A1/- to epigeal, hypogeal and the allotetraploid species, respectively. Mean shoot production ranged from 3.3 to 10.4 shoots per explant during the first subculture and varied significantly among the responsive genotypes within 4 species. Additional shoots were obtained in all genotypes after subsequent subculture. However, cotyledons were not as regenerable as cotyledonary node explants. Although significant differences in rooting were observed among the shoots of the 15 genotypes, the response was generally higher in MS basal medium (MSO) than in MS with 1.0 mg l-1 IAA. Regenerated plants were successfully transferred to soil (50–100% survival rate) and all surviving plants were reproductively fertile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avenido RA & Hautea DM (1990) In vitro organogenesis and flowering in mungbean (V.radiata L. Wilczek). Philipp. J. Crop. Sci. 15:169–173

    Google Scholar 

  • Avenido RA, Hautea DM, Mendoza CJ & Carandang SL (1991) Clonal propagation of F1 hybrids of mungbean (Vigna radiata L. Wilczek)_blackgram (V.mungo L. Hepper) by tissue culture. Philipp. J. Crop. Sci. 16:63–67

    Google Scholar 

  • Avenido RA, Power JB & Davey MR (1993) Differential plant regeneration responses from protoplasts of mungbean (Vigna radiata L.Wilczek) and mothbean (V.aconitifolia Jacq. Marechal). Philipp. J. Crop. Sci. 18:175–180

    Google Scholar 

  • Chandra M & Pal A (1995) Differential response of two cotyledons of Vigna radiata in vitro. Plant Cell Rep. 15:248–253

    Article  CAS  Google Scholar 

  • Chen HK, Mok MC & Mok DWS (1990) Somatic embryogenesis and shoot organogenesis from interspecific hybrid embryos of Vigna glabrescens and V.radiata. Plant Cell Rep. 9:77–79

    Article  Google Scholar 

  • Dana S (1980) Genomic relationship in the genus Vigna and its implications in the breeding programme. In: Gill KS (ed) Breeding Methods for the Improvement of Pulse Crops (pp. 357–367) Ludhiana, Punjab Agric Univ, India

    Google Scholar 

  • Dana S & Karmakar PG (1990) Species relation in Vigna subgenus Ceratotropis and its implication in breeding. In: Janick J (ed) Plant Breed Rev. (pp. 19–42)

  • Das DK, Shiva Prakash N & Bhalla-Sarin N (1998) An efficient regeneration system of blackgram (Vigna mungo L.) through organogenesis. Plant Sci. 134:199–206

    Article  CAS  Google Scholar 

  • Eapen S & George L (1990) Ontogeny of somatic embryos of Vigna aconitifolia, V.mungo and V.radiata. Ann. Bot. 66:219–226

    Google Scholar 

  • Endo Y & Ohashi H (1997) Cladistic analysis of phylogenetic relationships among tribes Cicereae, Trifolieae and Vicieae (Leguminosae). Am. J. Bot. 84:523–529

    Article  Google Scholar 

  • Fatokun CA, Danesh D, Young ND & Stewart EL (1993) Molecular and taxonomic relationships in the genus Vigna based on RFLP analysis. Theor. Appl. Genet. 86:97–104

    Article  CAS  Google Scholar 

  • Franklin CI, Trieu TN, Gonzales RA & Dixon RA (1991) Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tiss. Org. Cult. 24:199–206

    Article  Google Scholar 

  • Gamborg OL, Miller RA & Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cell. Exp. Cell Res. 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Ge K, Wang Y, Yuan X, Huang P, Yang J, Nie Z, Testa D & Lee N (1989) Plantlet regeneration from protoplasts isolated from mesophyll cells of adzukibean (Phaseolus angularis Wight). Plant Sci. 63:209–216

    Article  Google Scholar 

  • Geetha N, Venkatachalam P & Rao GR (1997a) Plant regeneration and propagation of blackgram (V.mungo L. Hepper) through tissue culture. Trop. Agric. 74:73–76

    Google Scholar 

  • Geetha N, Venkatachalam P & Rao GR (1997b) In vitro plant regeneration from different seedling explants of blackgram (V.mungo L. Hepper) via organogenesis. Breed Sci. 47:311–315

    CAS  Google Scholar 

  • George L & Eapen S (1994) Organogenesis and embryogenesis from diverse explants in pigeonpea (Cajanus cajan L.). Plant Cell Rep. 13:417–420

    Article  CAS  Google Scholar 

  • Gill R, Eapen S & Rao PS (1987) Morphogenetic studies of cultured cotyledons of urd bean (V.mungo L. Hepper). J. Plant Physiol. 130:1–5

    CAS  Google Scholar 

  • Godbole DA, Kunachgi MN, Potdar UA, Krisnamurthy KV & Mascarenhas AF (1984) Studies on drought resistant legume: the mothbean, Vigna aconitifolia Jacq. Marechal II. Morphogenetic studies. Plant Cell Rep. 3:75–78

    Article  Google Scholar 

  • Grant JE, Cooper PA, McAra AE & Frew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep. 15:254–258

    Article  CAS  Google Scholar 

  • Gulati A & Jaiwal PK (1990) Culture conditions effecting plant regeneration from cotyledons of Vigna radiata L. Wilczek. Plant Cell Tiss. Org. Cult. 23:1–7

    Article  CAS  Google Scholar 

  • Gulati A & Jaiwal PK (1992) In vitro induction of multiple shoots and plant regeneration from shoot tips of mungbean (Vigna radiata L. Wilczek). Plant Cell Tiss. Org. Cult. 29:199–205

    Article  CAS  Google Scholar 

  • Gulati A & Jaiwal PK (1993) In vitro selection of salt-resistant Vigna radiata (L.) Wilczek plants by adventitious shoot formation from cultured cotyledon explants. J. Plant. Physiol. 142:99–102

    CAS  Google Scholar 

  • Gulati A & Jaiwal PK (1994) Plant regeneration from cotyledonary nodes of mungbean (Vigna radiata L. Wilczek). Plant Cell Rep. 13:523–527

    Article  CAS  Google Scholar 

  • Ignamuthu S, Franklin G & Melchias G (1997) Multiple shoot formation and in vitro fruiting from cotyledonary nodes of Vigna mungo L. Hepper. Curr. Sci. 73:733–735

    Google Scholar 

  • Jaaska V & Jaaska V (1990) Isoenzyme variation in Asian beans. Bot. Acta. 103:281–290

    CAS  Google Scholar 

  • Jackson JA & Hobbs SLA (1990) Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell Dev. Biol. 26:835–838

    CAS  Google Scholar 

  • Jaiwal PK & Gulati A (1995) Current status and future strategies of in vitro culture techniques for genetic improvement of mungbean Vigna radiata L. Wilczek. Euphytica 86:167–181

    Google Scholar 

  • Kaga A, Tomooka N, Egawa Y, Hosaka K & Kamijima O (1996) Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica88:17–24

    Article  CAS  Google Scholar 

  • Khatoon K & Ara N (1995) Somatic embryogenesis in the suspension cultures of Vigna radiata L. Pak. J. Bot. 27:105–109

    Google Scholar 

  • Kim JW & Minamikawa T (1996) Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci. 117:131–138

    Article  CAS  Google Scholar 

  • Kumar V & Davey MR (1991) Genetic improvement of legumes using somatic cell and molecular techniques. Euphytica 55:157–169

    Article  CAS  Google Scholar 

  • Kumar AS, Gamborg OL & Nabors MW (1988) Plant regeneration from cell suspension cultures of Vigna aconitifolia. Plant Cell Rep. 7:138–141

    Article  CAS  Google Scholar 

  • Maekawa F (1955) Topo-morphological and taxonomical studies in Phaseoleae, Leguminosae. Jap. J. Bot. 15:103–116

    Google Scholar 

  • Malik KA & Saxena PK (1992) Somatic embryogenesis and shoot regeneration from intact seedlings of Phaseolus acutifolius A., P. aureus L. Wilczek, P.coccineus L. and P.wrightii L. Plant Cell Rep. 11:163–168

    Article  CAS  Google Scholar 

  • Mathews VH (1987) Morphogenetic responses from in vitro cultured seedling explants of mungbean (Vigna radiata L.Wilczek). Plant Cell Tiss. Org. Cult. 11:233–240

    Article  Google Scholar 

  • McClean P & Grafton F (1989) Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Sci. 60:117–122

    Article  Google Scholar 

  • Mendoza AB & Futsuhara Y (1990) Varietal differences on plant regeneration by tissue culture in mungbean (Vigna radiata L. Wilczek). Japan J. Breed. 40:457–467

    Google Scholar 

  • Mendoza AB, Hattori K, Nishimura T & Futsuhara Y (1993) Histological and scanning elecron microscopic observations on plant regeneration in mungbean cotyledon (Vigna radiata L. Wilczek) cultured in vitro. Plant Cell Tiss. Org. Cult. 32:137–143

    Article  Google Scholar 

  • Meurer CA, Dinkins RD & Collins GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep. 18:180–186

    Article  CAS  Google Scholar 

  • Murashige T & Skoog S (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K & Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Wasp) using Agrobacterium tumefaciens. Plant Cell Rep. 15:980–985

    Article  CAS  Google Scholar 

  • Nagl W, Ignacinamuthu S & Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J. Plant Physiol. 150:625–644

    CAS  Google Scholar 

  • Ozaki K (1986) Plantlet formation from the calli of primary leaf of adzukibean (Vigna angularis) Japan J. Breed. 36:416–419

    Google Scholar 

  • Pal M, Gosh M, Chandra M, Pal A & Biswas MM (1991) Transformation and regeneration of mungbean (Vigna radiata). Ind. J. Biochem. Biophys. 28:449–455

    CAS  Google Scholar 

  • Santalla M, Power JB & Davey MR (1998) Efficient in vitro shoot regeneration responses of Phaseolus vulgaris and P.coccineus. Euphytica 102:195–202

    Article  Google Scholar 

  • Sato T, Asaka D, Harada T & Matsukawa I (1993) Plant regeneration from protoplasts of adzukibean (Vigna angularis Ohwi & Ohashi). Japan J. Breed. 43:183–191

    CAS  Google Scholar 

  • Sato T (1995) Basic study of biotechnology in adzukibean (Vigna angularis Ohwi and Ohashi). Report of Hokkaido Pref. Agric. Exp. Station 87:1–68(Japanese)

    CAS  Google Scholar 

  • Shekhawat NS & Galston AW(1983) Isolation, culture and regeneration of mothbean Vigna aconitifolia protoplasts. Plant Sci. Lett. 32:43–51

    Article  Google Scholar 

  • Shiva Prakash N, Pental D & Bhalla-Sarin N (1994) Regeneration of pigeonpea (Cajanus cajan) from cotyledonary node via multiple shoot formation. Plant Cell Rep. 13:623–627

    Article  CAS  Google Scholar 

  • Smartt J (1981) Gene pools in Phaseolus and Vigna cultigens. Euphytica 30:445–449

    Article  Google Scholar 

  • Smartt J (1985) Evolution of grain legumes III. Pulses in the genus Vigna. Exp. Agric. 21:87–100

    Article  Google Scholar 

  • Takahashi W, Matsushita J, Kobayashi T, Tanaka O & Beppu T (1998) Plant regeneration from epicotyl segment and callus of Vigna angularis (cv Tanbadainagon) Japan J. Crop. Sci. 67:561–567(Japanese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avenido, R.A., Hattori, K. Differences in shoot regeneration response from cotyledonary node explants in Asiatic Vigna species support genomic grouping within subgenus Ceratotropis (Piper) Verdc.. Plant Cell, Tissue and Organ Culture 58, 99–110 (1999). https://doi.org/10.1023/A:1006325327624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006325327624

Navigation